-
大气污染的日益严重引起了中国政府及社会各界的广泛关注,恶臭气体作为再生水厂建设和运行的主要副产物,其治理技术越来越受到人们的关注。现有除臭技术主要有燃烧法、氧化法、吸收法等[1],相较于这些技术,生物除臭技术作为一种经济高效、环境友好的技术,在恶臭治理方面已得到了广泛的认可。该技术是利用微生物的生理代谢将具有臭味的物质加以转化,使目标污染物有效分解,从而达到治理恶臭气体的目的[2-3]。
在生物除臭技术中,采用多孔、比表面积大的聚氨酯泡沫填料作为除臭微生物生长载体可大大提高除臭效率[4-6]。聚氨酯泡沫是一种密度小、开孔率高、泡孔尺寸可调的聚合物发泡材料[7],目前,聚氨酯泡沫多应用在污水处理方面[8-9],而在恶臭气体治理方面应用相对较少。DANIEL等[10]将聚氨酯填料应用在生物滴滤器中去除高挥发性有机物(VOCs)。张颖等[11]利用其高吸附性能对大气中持久性有机污染物(POPs)进行吸附性研究。胡永彪等[12]利用聚氨酯泡沫大气被动采样技术对北京部分区域进行了气体采集。为了提高除臭效果并使除臭微生物能在聚氨酯泡沫上更好地生长,需对聚氨酯泡沫进行改性,以增强其压缩强度、抗老化性能及良好的尺寸稳定性。最简单经济且有效的方法为将纤维材料作为其增强填料添加到聚氨酯原料中,以制备增强型聚氨酯泡沫[13-15]。国内外一些研究常采用玻璃纤维、甘蔗纤维和木质纤维对聚氨酯泡沫强度进行提高,其增强效果已有许多报道[16-19]。本研究制备了压缩强度高、抗老化性能强的玻璃纤维聚氨酯、甘蔗纤维聚氨酯和木质纤维聚氨酯,并将其应用到生物除臭滤塔中作为除臭微生物生长载体来进行生物除臭实验,研究可为聚氨酯泡沫在实际臭气治理工程中的推广应用提供参考。
聚氨酯泡沫的改性及其在臭气治理中的应用
Polyurethane foam modification and its application for odor treatment
-
摘要: 通过将不同类型的纤维添加到聚氨酯原始配方中进行发泡,制得增强型聚氨酯泡沫,将其作为除臭微生物生长载体,用于生物除臭实验中。考察了不同类型的纤维的长度和数目对聚氨酯泡沫的压缩强度、抗湿热老化性能、保水率、挂膜量及其除臭效果的影响。结果表明:3 mm短玻璃纤维聚氨酯压缩性能、抗湿热老化性能和挂膜性能最佳,其挂膜干物质达到0.90 g;甘蔗纤维聚氨酯吸水性能和挂膜能力较优,但保水性能一般;木质纤维聚氨酯的吸水性能和保水率最优。以短玻璃纤维聚氨酯为生物滤塔填料进行实验,结果显示对高负荷区硫化氢和氨的平均去除率分别约为94%和77%,优于市售除臭填料,具有良好的生物除臭应用前景。Abstract: Polyurethane foam was prepared by adding different fibers into the polyurethane original formula for foaming, and it was used as carrier for deodorization microbial growth in the biological deodorization test. The effects of fiber length and number on the compression strength, hygrothermal aging resistance performance, water retention, biofilm amount and deodorization of polyurethane foam were studied. The results showed that polyurethane foam with 3 mm short glass fiber had the best performance on compression, hygrothermal aging resistance and biofilm hanging, and dry biofilm mass reached 0.90 g. Sugarcane fiber polyurethane had better water absorption performance and film hanging ability, but its water retention performance was general. Wood fiber polyurethane had the best water absorption and water retention performance. When polyurethane foam with short glass fiber was used as filler in a biological filtration tower, the average removal efficiencies of hydrogen sulfide and ammonia at high load zone were about 94% and 77%, respectively, which was better than the commercial deodorization filler, and has a good prospect of biological deodorization.
-
Key words:
- hydrogen sulfide /
- biological deodorization /
- glass fiber /
- polyurethane foam
-
表 1 改性聚氨酯泡沫添加纤维的种类和规格
Table 1. Type and specification of fiber in modified polyurethane foam
序号 玻璃纤维/mm 甘蔗纤维/mm 木质纤维/mm 0# 无添加 无添加 无添加 1# 3 0.85~1.00 0.85~1.00 2# 4.5 0.3~0.85 0.3~0.85 3# 6 0.18~0.3 0.18~0.3 4# 9 0.15~0.18 0.15~0.18 5# 12 0.106~0.15 0.106~0.15 表 2 生物滴滤装置玻璃纤维增强填料去除硫化氢的效果
Table 2. Hydrogen sulfide removal by glass fiber reinforced filler in bio-trickling filter
实验分组 进气浓度/
(mg·m−3)出气浓度/
(mg·m−3)去除率/
%硫去除负荷/
(g·(kg·d)−1)平均硫去除负
荷/(g·(kg·d)−1)低负荷组 0.31 0.08 74.00 0.003 4 0.004 0 0.34 0.11 68.00 0.003 4 0.40 0.10 75.00 0.004 5 0.41 0.14 66.00 0.004 0 0.47 0.15 68.00 0.004 8 中负荷组 1.08 0.20 81.00 0.013 1 0.016 5 1.19 0.26 78.00 0.013 8 1.23 0.17 86.00 0.015 8 1.56 0.32 79.00 0.018 4 1.76 0.31 82.00 0.021 5 高负荷组 37.98 2.83 93.00 0.522 4 0.581 9 39.80 2.44 94.00 0.555 2 40.19 2.91 93.00 0.554 0 42.37 1.34 97.00 0.609 7 48.05 3.10 94.00 0.668 0 表 3 生物滴滤装置玻璃纤维增强填料氨去除效果
Table 3. NH3 removal by glass fiber reinforced filler in bio-trickling filter
实验
分组进气浓度/
(mg·m−3)出气浓度/
(mg·m−3)去除率/
%平均去除
率/%低负
荷组2.84 1.70 40.00 45.68 4.62 2.54 45.00 5.18 2.74 47.00 8.12 4.33 46.67 10.26 5.16 49.71 中负
荷组25.78 8.75 66.06 71.51 27.31 9.63 64.74 30.98 8.18 73.60 31.76 7.56 76.20 39.76 9.17 76.94 高负
荷组61.26 12.54 79.53 77.05 65.87 15.23 76.88 70.25 16.25 76.87 80.64 19.25 76.13 88.89 21.47 75.85 -
[1] 郑斯宇, 杨延梅. 污水处理厂恶臭气体控制综述[J]. 给水排水, 2015, 51(s1): 109-114. [2] 倪立华, 周大同. 生物除臭技术在污水处理站臭气处理中的应用[J]. 粮食与食品工业, 2018, 25(5): 17-19. [3] 王文婷. 生物除臭法在恶臭气体治理中的应用[J]. 资源节约与环保, 2019(3): 69. doi: 10.3969/j.issn.1673-2251.2019.03.064 [4] NGO H H, GUO W S, WEN X. Evaluation of a novel sponge-submerged membrane bioreactor (SSMBR) for sustainable water reclamation[J]. Bioresource Technology, 2008, 99(7): 2429-2435. doi: 10.1016/j.biortech.2007.04.067 [5] 王佩佩. 铁氧化物陶粒和聚氨酯泡沫填料生物滴滤塔处理CS2实验研究[D]. 合肥: 合肥工业大学, 2016. [6] 贺娟. 纤维改性聚氨酯泡沫材料研究进展[C]//北京玻璃钢研究设计院有限公司. 玻璃钢/复合材料学术年会, 2012: 281-283. [7] 丁友江, 朱征, 安淑英, 等. 聚氨酯泡沫/木质纤维复合材料的制备及其性能初探[J]. 建筑节能, 2010, 38(11): 62-64. doi: 10.3969/j.issn.1673-7237.2010.11.014 [8] 王蕾, 曹德菊, 张娟. 聚氨酯材料固定化微生物处理含酚废水的研究[J]. 安徽农学通报, 2008, 14(9): 59-60. doi: 10.3969/j.issn.1007-7731.2008.09.024 [9] 王越, 李杰, 蒋小弟. I Carrier-RBC对低浓度有机污水的降解研究[J]. 广东化工, 2011, 38(9): 21-22. doi: 10.3969/j.issn.1007-1865.2011.09.011 [10] DANIEL D, CHRISTINE W, FLORIAN W, et al. Prevention of clogging in a polyurethane foam packed biotrickling filter treating emissions of 2-butoxyethanol[J]. Journal of Cleaner Production, 2018, 200(1): 609-621. [11] 张颖, 吕天峰, 梁宵, 等. 主动采样技术在中国大气POPs监测中的应用[J]. 中国环境监测, 2009, 25(1): 14-18. doi: 10.3969/j.issn.1002-6002.2009.01.005 [12] 胡永彪, 李英明, 耿大玮, 等. 北京冬季大气中多溴联苯醚的污染水平和分布特征[J]. 中国环境科学, 2013, 33(1): 9-13. doi: 10.3969/j.issn.1000-6923.2013.01.002 [13] 徐炽焕. 应用茶多酚开发抗菌除臭的聚氨酯泡沫[J]. 江苏化工, 2000, 1(9): 27-28. [14] COTGREAVE T, SHORTALL J B. Failure mechanisms in fiber reinforced rigid polyurethane foam[J]. Journal of Cellular Plastics, 1977, 13(4): 240-245. doi: 10.1177/0021955X7701300401 [15] 林桂, 刘力, 张建春, 等. 纤维增强聚合物发泡体的研究进展[J]. 中国塑料, 2002, 16(1): 11-15. [16] 徐涛, 王建华. 玻纤增强聚氨酯泡沫塑料界面形成特性及对其力学性能的影响[J]. 含能材料, 2002, 10(2): 84-87. doi: 10.3969/j.issn.1006-9941.2002.02.011 [17] 游长江, 谢青, 曾一铮, 等. 不饱和聚酯/热塑性聚氨酯/甘蔗纤维复合材料的结构与性能[J]. 高分子材料科学与工程, 2011, 27(6): 53-56. [18] 戴玉明, 巴志新, 王章忠. 木质素增强硬质聚氨酯泡沫塑料抗压性能研究[J]. 南京工程学院学报(自然科学版), 2005, 3(2): 22-26. [19] 罗霞, 俞科静, 王梦蕾, 等. 玻璃纤维增强聚氨酯泡沫的性能研究[J]. 化工新型材料, 2017, 45(7): 90-92. [20] 朱吕民, 刘益军. 聚氨酯泡沫塑料[M]. 3版. 北京: 化学工业出版社, 2005. [21] 陈雪泉. 生物滴滤和过滤技术降解含硫恶臭有机废气的研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2016. [22] 张丽, 张玉歌, 顾燕, 等. 生物滴滤塔在处理市政恶臭中的应用[J]. 广东化工, 2016, 43(16): 138-139. doi: 10.3969/j.issn.1007-1865.2016.16.066 [23] KARTHIKEYAN C S, SANKARAN S, KUMAR M N J, et al. Processing and compressive strengths of syntactic foams with and without fibrous reinforcements[J]. Journal of Applied Polymer Science, 2001, 81(2): 405-411. doi: 10.1002/app.1452 [24] KARTHIKEYAN C S, SANKARAN S, KISHOR E. Influence of chopped strand fibres on the flexural behaviour of a syntactic foam core system[J]. Polymer International, 2000, 49(2): 158-162. doi: 10.1002/(SICI)1097-0126(200002)49:2<158::AID-PI319>3.0.CO;2-8 [25] 卢子兴, 王建华, 谢若泽, 等. 增强聚氨酯泡沫塑料力学行为的研究[J]. 复合材料学报, 1999, 16(2): 40-46. [26] 吴建华, 邱信欣, 刘锋, 等. 生物滴滤塔处理硫化氢废气[J]. 化工环保, 2019, 39(3): 278-282. doi: 10.3969/j.issn.1006-1878.2019.03.007