-
随着航空航天和深空探测的发展,保障长期载人航天任务及空间站的运行成为关键,环境控制生命保障系统(environmental control and life support system, ECLSS)因其可实现物质循环和食物的自给而得到广泛的研究,其中的水处理与循环系统是重要的保障之一。ECLSS中水处理与循环系统主要包括卫生废水、冷凝水、相变水和尿液等废水的处理及回用,其中尿液成分复杂,性质不稳定,盐类、营养元素(如N、P、K)及有机物的浓度高[1]。同时尿液中存在多种微量污染物和致病微生物,传统污水处理方法难以有效去除,对人类和环境具有显著的潜在风险[2]。因此,尿液的处理与回收是载人航天生命保障系统发展的关键[3]。
目前,ECLSS中尿液的处理与回收主要应用膜分离技术[4],但其存在严重的盐结垢及有机物膜污染,成为ECLSS中水循环利用系统研究的主要攻关难点[5]。吸附是一种广泛应用的净水技术,已广泛应用于膜过程的预处理中。SOLANKI等[6]研究表明,吸附可有效去除尿液中药物污染物和有机物,也可实现尿液中N、P的去除与回收[7-8]。活性炭是目前应用最广泛的经济型吸附剂,其巨大的比表面积及表面非极性和极性位点可有效吸附营养元素及有机物[9]。XU等[10]研究表明,采用改性碳基吸附材料对尿液中N和P的吸附能力可达48 mg·g−1和116 mg·g−1。由于铁元素具有多种形态和价态而表现出不同的性质和性能[11-13],近年来铁氧化物作为吸附剂在水处理中受到广泛研究与应用[14]。相关研究[15-16]表明,铁氧化物可有效去除水中N、P等污染物。JIA等[17]研究发现,α-Fe2O3、γ-Fe2O3、Fe3O4等铁氧化物具有较高的比表面积及丰富的吸附位点,且其多孔结构有利于污染物的快速扩散,是废水中污染物的优良吸附剂。同时,与其他吸附剂如活性炭相比,其纳米结构因在低温下通过催化燃烧得到,因此,具有更好的再生性能[18]。但将铁氧化物与活性炭结合应用于ECLSS中的尿液处理鲜见报道,相关的吸附性能及机理也有待进一步探究。同时,ECLSS中尿液通常需要进行酸预处理以保障其性质稳定,酸预处理尿液对吸附性能的影响也是评估尿液处理性能的关键。
本研究针对ECLSS中尿液特点,考察了椰壳、果壳、木质3种活性炭对尿液的吸附性能,考察了不同铁氧化物对活性炭吸附尿液的影响,研究了酸预处理对铁氧化物强化活性炭吸附过程的影响,并对吸附机理进行分析,以期为尿液处理提供一种参考。
铁氧化物对活性炭处理尿液的影响
Effect of iron oxides on urine treatment by activated carbon
-
摘要: 采用椰壳、果壳和木质活性炭进行尿液处理,分别研究了铁氧化物及尿液预处理对椰壳炭处理尿液的影响。结果表明:椰壳炭的比表面积最高,具有最佳的尿液处理效果,对TOC、
${{\rm{PO}}_4^{3 - }} $ -P、TP、${{\rm{NH}}_4^ + } $ -N和TN的去除率可达35.02%、8.17%、11.98%、39.42%和14.79%;投加的铁氧化物对P的去除效果较好,去除率提高了14%,且酸预处理进一步提升了P的去除效果,去除率提高了9.29%;但在酸性条件下,有机物和${{\rm{NH}}_4^ + }$ -N的吸附能力略有所下降;吸附过程对有机物的削减主要是由于活性炭的吸附及尿素的分解所致;N去除的主要机理是由于鸟粪石的沉淀所致;P削减的主要原因为铁氧化物表面的羟基位点吸附和鸟粪石沉淀,酸性条件可促进铁氧化物和${{\rm{PO}}_4^{3 - }}$ 发生质子化过程,因此,其可进一步强化P的去除。综合上述结果,铁氧化物-活性炭吸附可有效去除尿液中有机物和P,是一种有效的尿液预处理工艺,以上结果可为尿液的处理和回收提供参考。Abstract: Three kinds of activated carbon (coconut shell, nutshell and wooden activated carbons) were applied for urine treatment, and the effect of iron oxides and urine acidification treatment on urine treatment by coconut shell activated carbons was carefully investigated in terms of N, P and organic matters. The result showed that coconut shell activated carbon had the best urine treatment performance due to its high specific surface area, and the removal rates of TOC,${\rm{PO}}_4^{3 - } $ -P, TP,${\rm{NH}}_4^ + $ -N and TN could reach 35.02%, 8.17%, 11.98%, 39.42% and 14.79%, respectively. The addition of iron oxides could lead to the increase of phosphorus removal rate by 14%, and the acidification pretreatment could further elevate TP removal rate by 9.29%. While under the acidic conditions, the adsorption ability of organics and${\rm{NH}}_4^ + $ -N slightly decreased. The adsorption on activated carbon and urea decomposition were key reasons for TOC removal, and the struvite precipitation was the main reason for N removal, adsorption by the hydroxyl groups on the surface of iron oxide and struvite precipitation were the key reasons for P removal. Acidification pretreatment could promote the protonation between hydroxyl groups on iron oxide and phosphate and further enhance P removal. In conclusion, adsorption by iron oxides-activated carbon had excellent removal performances towards organic matters and P, which showed a great potential for urine pretreatment, it will provide reference for the treatment and recovery of urine.-
Key words:
- activated carbon /
- adsorption /
- iron oxides /
- urine /
- phosphorus
-
表 1 活性炭比表面积和孔容积
Table 1. Specific surface and pore volume of activated carbon
活性炭 比表面积/(m2·g−1) 总孔容积/(cm3·g−1) 微孔容积/(cm3·g−1) 介孔容积/(cm3·g−1) 大孔容积/(cm3·g−1) 椰壳 566.518 7 0.294 4 0.243 8 0.047 8 0.002 8 果壳 516.312 4 0.267 5 0.211 5 0.051 0 0.004 9 木质 310.526 0 0.337 3 0.012 1 0.302 6 0.022 6 -
[1] 董良飞, 蒋健钗, UDERT K M, 等. 尿液源头分离系统中的沉淀研究[J]. 环境工程学报, 2008, 2(7): 964-968. [2] 蒋善庆, 王晓昌, 李超, 等. 源分离尿液资源化利用与风险控制技术研究进展[J]. 安全与环境学报, 2014, 14(5): 174-182. [3] 朱国荣, 谢倍珍, 刘红. 载人深空探测活动中的尿液处理回收技术分析[J]. 深空探测学报, 2018, 5(6): 582-590. [4] 杨祺, 张文瑞, 于锟锟. 空间站尿液处理技术研究及进展[J]. 真空与低温, 2014, 20(6): 315-318. doi: 10.3969/j.issn.1006-7086.2014.06.002 [5] 王健行. 密闭生保系统中基于盐回收的纳滤膜技术及膜污染防治[R]. 北京: 中国科学院生态环境研究中心博士后出站报告, 2016. [6] SOLANKI A, BOYER T H. Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine[J]. Chemosphere, 2019, 218: 818-826. doi: 10.1016/j.chemosphere.2018.11.179 [7] PRADHAN S K, MIKOLAA, CAHALA R. Nitrogen and phosphorus harvesting from human urine using a stripping, absorption, and precipitation process[J]. Environmental Science & Technology, 2017, 51(9): 5165-5171. [8] 温国期, 胡正义, 刘小宁, 等. 改性沸石吸附柱去除和回收脱磷尿液废水中氨氮试验研究[J]. 农业环境科学学报, 2013, 32(12): 2488-2494. doi: 10.11654/jaes.2013.12.023 [9] LAIRD D, FLEMING P, WANG B, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 436-442. [10] XU K, LIN F, DOU X, et al. Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides[J]. Journal of Cleaner Production, 2018, 187: 205-214. doi: 10.1016/j.jclepro.2018.03.206 [11] KUSIOR A, MICHALEC K, JELEN P, et al. Shaped Fe2O3 nanoparticles-synthesis and enhanced photocatalytic degradation towards RhB[J]. Applied Surface Science, 2019, 476: 342-352. doi: 10.1016/j.apsusc.2018.12.113 [12] 吴承慧, 陈长安, 高旭波, 等. 改性纳米级Fe3O4对地下水中氟的吸附性能研究[J]. 环境科学与技术, 2019, 42(6): 82-88. [13] 张斌, 韩宇霞, 赵斯琴, 等. 纳米γ-氧化铁的制备及其吸附性能研究[J]. 无机盐工业, 2019, 51(6): 76-79. [14] 黎想, 任彦瑛, 丁琳洁. 预磁化零价铁活化过硫酸盐体系降解双氯芬酸钠[J]. 环境工程学报, 2019, 13(12): 2808-2815. doi: 10.12030/j.cjee.201901116 [15] 甘莉, 曹丹, 金晓英, 等. 离子型表面活性剂改性绿色合成单分散纳米氧化铁的制备及其吸附磷的性能[J]. 环境科学学报, 2015, 35(8): 2442-2449. [16] 李婷, 朱易春, 康旭, 等. 海绵铁还原微污染源水中硝酸盐氮的影响因素研究[J]. 工业水处理, 2016, 36(11): 85-89. [17] JIA Z, LIU J, WANG Q, et al. Synthesis of 3D hierarchical porous iron oxides for adsorption of congo red from dye wastewater[J]. Journal of Alloys and Compounds, 2015, 622: 587-595. doi: 10.1016/j.jallcom.2014.10.125 [18] WANG J, XU L, ZHANG Z, et al. Shape-controlled synthesis of α-Fe2O3 nanocrystals for efficient adsorptive removal of Congo red[J]. RSC Advances, 2015, 5(61): 49696-49702. doi: 10.1039/C5RA06324H [19] 刘锦华. 四种吸附材料对蓝/红物质的吸附作用及黑臭水体光学特性研究[D]. 广州: 广东工业大学, 2018. [20] UDERT K M, LARSEN T A, BIEBOW M, et al. Urea hydrolysis and precipitation dynamics in a urine-collecting system[J]. Water Research, 2003, 37(11): 2571-2582. doi: 10.1016/S0043-1354(03)00065-4 [21] LIU Z, ZHAO Q, WANG K, et al. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine[J]. Journal of Environmental Sciences, 2008, 20(8): 1018-1024. doi: 10.1016/S1001-0742(08)62202-0 [22] 曾俊钦, 邱春生, 孙力平, 等. 储存控制条件对尿液氮磷的影响[J]. 环境工程学报, 2016, 10(10): 5605-5610. doi: 10.12030/j.cjee.201505094 [23] ZHU K, FU H, ZHANG J, et al. Studies on removal of ${{\rm{NH}}_4^{+} } $ -N from aqueous solution by using the activated carbons derived from rice husk[J]. Biomass and Bioenergy, 2012, 43: 18-25. doi: 10.1016/j.biombioe.2012.04.005[24] ZHANG S, ZHAO X, NIU H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167(1): 560-566. [25] 宋冬. 零价铁强化低碳源城市污水处理厂脱氮除磷效果研究[D]. 西安: 长安大学, 2016. [26] 付丰连. 零价铁处理污水的最新研究进展[J]. 工业水处理, 2010, 30(6): 1-4. doi: 10.3969/j.issn.1005-829X.2010.06.001 [27] HUANG X. Intersection of isotherms for phosphate adsorption on hematite[J]. Journal of Colloid and Interface Science, 2004, 271(2): 296-307. doi: 10.1016/j.jcis.2003.12.007 [28] ZHU Z, HUANG C P, ZHU Y, et al. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water[J]. Journal of Water Process Engineering, 2018, 25: 96-104. doi: 10.1016/j.jwpe.2018.05.010 [29] 席宏波, 廖娣劼, 尚海涛, 等. 纳米铁除磷的影响因素及吸附模式研究[J]. 给水排水, 2008, 44(S1): 191-195. [30] 张颖纯, 王伟. 纳米零价铁颗粒除磷反应机理[J]. 环境工程学报, 2015, 9(5): 2041-2047. doi: 10.12030/j.cjee.20150502 [31] 冯皓迪, 丁一珊, 崔梦萦, 等. MAP法沉淀回收尿液中氮磷的研究[J]. 环境工程, 2016, 34(S1): 162-166. [32] 李春霞, 赵成坚, 祝迎春. 基于K2Cr2O7/H2SO4体系的尿预处理剂对尿液的影响[J]. 航天医学与医学工程, 2016, 29(2): 133-136. [33] 刘斌, 顾洁, 邱盼, 等. 稻壳与脱硅稻壳活性炭特性及对有机物吸附[J]. 林产化学与工业, 2014, 34(5): 27-34. [34] LIANG H, LIU K, NI Y. Synthesis of mesoporous α-Fe2O3 using cellulose nanocrystals as template and its use for the removal of phosphate from wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 474-479. doi: 10.1016/j.jtice.2016.12.008 [35] LI G, GAO S, ZHANG G, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)-copper(II) binary oxides[J]. Chemical Engineering Journal, 2014, 235: 124-131. doi: 10.1016/j.cej.2013.09.021 [36] 蒋善庆, 王晓昌. 黄土颗粒吸附水解尿液中磷酸盐特性及机制[J]. 化工进展, 2017, 36(7): 2667-2675.