-
膜处理技术因其具有节省空间和提高出水水质的特点,近年来已经广泛用于污水处理中[1]。然而,膜污染也不容忽视,需要经常维护才能使膜恢复正常运行[2-3];因此,膜污染已成为污水处理的研究热点[1,4]。造成膜污染最关键的原因是形成了不需要的生物滤饼层,该过程主要有以下3个阶段:膜孔被较大的固体堵塞;活性滤饼层(LCL)在膜表面积累;死细胞形成死滤饼层(DCL)并产生细胞外聚合物(EPS)[5-6]。
有目的地让生物滤饼生长在多孔网状材料(如无纺布、织物或陶瓷材料)的表面,并自发地形成动态膜(SFDM)[7],以提高筛孔过滤性能,可以达到粗滤的效果(过滤孔径为5~200 μm)[8-11]。这种基于SFDM的粗滤,也被称为动态生物滤网(DMf)[12],现已成为在污水处理中传统微滤(MF,孔径为0.1~1 μm)的替代技术[7,13]。有研究[14]表明,DMf已被用于改善污水AB处理工艺的A阶段(有机物的去除率由40%提高到70%)。
对于DMf来说,快速形成活性滤饼层进行过滤是理想状态,但缓慢累积的死饼层会引起空隙堵塞[5]。大量的研究表明,筛孔大小在以下几个方面起着关键作用:有选择地形成活性滤饼层,以获得较好的出水水质;最大限度地减少EPS积累对膜污染控制的不利影响[15];在反冲洗之后,能快速重新生成有效的生物滤饼层[8,12,16]。
为了系统地分析DMf的形成与污染过程,本研究通过数学模拟和小试实验对DMf进行系统梳理,探讨了动态生物滤网表面密度与EPS浓度之间的关系;在小试规模下研究了筛孔大小对膜形成的影响,分析了动态生物滤网所形成的生物滤饼层中微生物的分布情况,以期为探究EPS对动态生物滤网中滤饼层形成的影响和膜污染进程提供参考。
动态生物滤网中胞外聚合物产量预测及滤网的污染分析
Prediction of extracellular polymer production and pollution analysis in self-forming dynamic mesh filter system
-
摘要: 近年来,在各种膜处理技术中,用于废水或活性污泥混合液粗滤的自形成动态生物滤网(DMf)受到广泛关注。基于此,提出了一种用于估算合适的筛孔孔径的模拟方法,来预测并控制生物滤饼层在筛孔表面的形成,以提高过滤效果并减轻污染。结果表明:动态生物滤网面密度与EPS浓度之间具有显著的正相关性,可以利用滤网面密度来预测胞外聚合物(EPS)产生量;孔径为55~100 μm的筛网上形成的动态生物滤网可以阻挡泥水混合液中的大多数颗粒,但有部分细小颗粒仍可穿过滤网表层,并在滤网底层积累,从而产生EPS。CLSM分析结果表明,DMf中死细胞的比例及其厚度与网孔孔径显著相关,且在所有实验用的DMf中的活细胞层的厚度均约为20 μm。这表明有效的氧气渗透仅发生在DMf的薄层内,过厚的生物层会阻止氧气的渗透,进而导致微生物死亡而释放更多的EPS,最终加剧膜污染。Abstract: In recent years, the self-forming dynamic mesh filter (DMf) for the macro-filtration of wastewater or activated sludge mixed-liquors has been extensively studied in various membrane treatment technologies. This study developed a simulation method for estimating the appropriate mesh size to predict and control the formation of the bio-cake layer on the mesh surface, which can enhance filtration effect and reduce fouling. The results showed that there was a significant correlation between the bio-cake planar densities and EPS concentration. The planar densities could be used to predict EPS yield. The DMf formed on the meshes with an aperture of 55~100 μm could block most particles in the sludge mixture, but some of the fine particles could still pass through its surface layer, and accumulated at the bottom of the DMf to produce EPS. CLSM analysis showed that the proportion of dead cells in the bio-cake and their thickness were closely related to mesh pore size, and the thickness of live cake layer (LCL) on the four meshes were approximately 20 μm, indicating that effective oxygen penetration only occurred in the thin layer of DMf, too thick layer will prevent the penetration of oxygen, which could lead to the death of microorganisms, more EPS release, and eventually exacerbated membrane fouling.
-
-
[1] MENG F, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. doi: 10.1016/j.watres.2008.12.044 [2] PEARCE G. Introduction to membranes - MBRs: Manufacturers’ comparison: Part I. Filtration and separation[J]. Filtration & Separation, 2008, 45(4): 23-25. [3] LESJEAN B, TAZI-PAIN A, THAURE D, et al. Ten persistent myths and the realities of membrane bioreactor technology for municipal applications[J]. Water Science & Technology, 2011, 63(1): 32-39. [4] DOYEN W, MUES W, MOLENBERGHS B, et al. Spacer fabric supported flat-sheet membranes: A new era of flat-sheet membrane technology[J]. Desalination, 2010, 250(3): 1078-1082. doi: 10.1016/j.desal.2009.09.112 [5] MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006 [6] LE-CLECH P, CHEN V, FANE T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science, 2006, 284(1/2): 17-53. [7] FAN B, HUANG X. Characteristics of a self-forming dynamic membrane coupled with bioreactor for municipal wastewater treatment[J]. Environmental Science & Technology, 2002, 36(23): 5245-5251. [8] FUCHS W, RESCH C, KERNSTOCK M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process[J]. Water Research, 2005, 39(5): 803-810. doi: 10.1016/j.watres.2004.12.001 [9] AN Y, WANG Z, WU Z, et al. Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment[J]. Chemical Engineering Journal, 2009, 155(3): 709-715. doi: 10.1016/j.cej.2009.09.003 [10] LIU H, YANG C, PU W, et al. Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor[J]. Chemical Engineering Journal, 2009, 148(2/3): 290-295. [11] REN X, SHON H K, JANG N, et al. Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment[J]. Water Research, 2010, 44(3): 751-760. doi: 10.1016/j.watres.2009.10.013 [12] LODERER C, WÖRLE A, FUCHS W. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance[J]. Environmental Science & Technology, 2012, 46(7): 3844-3850. [13] ERSAHIN M, OZGUN H, TAO Y, et al. Applicability of dynamic membrane technology in anaerobic membrane bioreactors[J]. Water Research, 2014, 48(1): 420-429. [14] ROEST K, DAAMEN B, DE GRAAFF M S, et al. Energy production from wastewater: Dynamic filtration of A-stage sludge[J]. IWA world congress on water climate and energy, 2012, Ireland. [15] 程刚, 朱雷, 许颖, 等. 厌氧动态膜生物反应器中动态膜形成及其运行周期的影响因素分析[J]. 环境工程学报, 2018, 12(5): 1408-1415. doi: 10.12030/j.cjee.201710155 [16] BAI P, WANG J, CHEN G H. A real trial of a long-term non-fouling membrane bioreactor for saline sewage treatment[J]. Water Science & Technology, 2011, 63(7): 1519-1523. [17] 涂凌波, 黄怡然, 王冰洁, 等. 玻纤管动态膜生物反应器短程硝化反硝化去除污染物[J]. 环境工程学报, 2018, 12(6): 1629-1636. doi: 10.12030/j.cjee.201711161 [18] ZHANG J, CHUA H C, ZHOU J, et al. Factors affecting the membrane performance in submerged membrane bioreactors[J]. Journal of Membrane Science, 2006, 284(1/2): 54-66. [19] 洪俊明, 尹娟, 卢芳芳. 膜基材对动态膜生物反应器性能的影响研究[J]. 环境工程学报, 2011, 5(2): 73-76. [20] FREDERICK M R, KUTTLER C, HENSE B A, et al. A mathematical model of quorum sensing regulated EPS production in biofilm communities[J]. Theoretical Biology and Medical Modelling, 2011, 8(1): 8-29. doi: 10.1186/1742-4682-8-8 [21] YEON K M, LEE C H, KIM J. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching[J]. Environmental Science & Technology, 2009, 43(19): 7403-7409. [22] FANE A G, FELL C J D, NOR M T. Ultrafiltration activated sludge system-development of a predictive model[J]. Polymer Science and Technology, 1981, 13: 631-658. [23] CHANG I S, BAG S O, LEE C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge[J]. Process Biochemistry, 2001, 36(8/9): 855-860. [24] JIANG F, LEUNG D H, LI S Y, et al. A biofilm model for prediction of pollutant transformation in sewers[J]. Water Research, 2009, 43(13): 3187-3198. doi: 10.1016/j.watres.2009.04.043