Processing math: 100%

铁氧化物对活性炭处理尿液的影响

焦赟仪, 郑利兵, 魏源送, 周书葵. 铁氧化物对活性炭处理尿液的影响[J]. 环境工程学报, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
引用本文: 焦赟仪, 郑利兵, 魏源送, 周书葵. 铁氧化物对活性炭处理尿液的影响[J]. 环境工程学报, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
JIAO Yunyi, ZHENG Libing, WEI Yuansong, ZHOU Shukui. Effect of iron oxides on urine treatment by activated carbon[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
Citation: JIAO Yunyi, ZHENG Libing, WEI Yuansong, ZHOU Shukui. Effect of iron oxides on urine treatment by activated carbon[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130

铁氧化物对活性炭处理尿液的影响

    作者简介: 焦赟仪(1995—),女,硕士研究生。研究方向:水污染控制与资源化。E-mail:hncsjyy163@163.com
    通讯作者: 周书葵(1965—),男,硕士,教授。研究方向:污染控制与资源化。E-mail:zhoushukui@usc.edu.cn
  • 基金项目:
    国家自然科学基金青年基金资助项目(51908539);中国-斯里兰卡水技术研究与示范联合中心项目
  • 中图分类号: X703

Effect of iron oxides on urine treatment by activated carbon

    Corresponding author: ZHOU Shukui, zhoushukui@usc.edu.cn
  • 摘要: 采用椰壳、果壳和木质活性炭进行尿液处理,分别研究了铁氧化物及尿液预处理对椰壳炭处理尿液的影响。结果表明:椰壳炭的比表面积最高,具有最佳的尿液处理效果,对TOC、PO34-P、TP、NH+4-N和TN的去除率可达35.02%、8.17%、11.98%、39.42%和14.79%;投加的铁氧化物对P的去除效果较好,去除率提高了14%,且酸预处理进一步提升了P的去除效果,去除率提高了9.29%;但在酸性条件下,有机物和NH+4-N的吸附能力略有所下降;吸附过程对有机物的削减主要是由于活性炭的吸附及尿素的分解所致;N去除的主要机理是由于鸟粪石的沉淀所致;P削减的主要原因为铁氧化物表面的羟基位点吸附和鸟粪石沉淀,酸性条件可促进铁氧化物和PO34发生质子化过程,因此,其可进一步强化P的去除。综合上述结果,铁氧化物-活性炭吸附可有效去除尿液中有机物和P,是一种有效的尿液预处理工艺,以上结果可为尿液的处理和回收提供参考。
  • 电除尘器是工业烟气的主流除尘设备,在燃煤电厂的应用占比约为70% [1-3],烧结机机头的烟尘治理设备几乎全部为电除尘器[4-6]。随着燃煤电厂烟气超低排放的实施,湿式电除尘技术在燃煤电厂得到广泛应用。电除尘器主要分为电控和本体2个部分,近年来,针对燃煤电厂及非电行业的超低排放改造技术频有报道。在本体技术方面,超低排放技术包括低低温电除尘技术、湿式电除尘技术、颗粒团聚技术等[7-11]。在电源技术方面,朱法华等[12]分析了电除尘器高频电源节能减排的机理,介绍了国内外高频电源的研究与应用情况,并基于实际工程案例,介绍了高频电源的节能、减排幅度;李纪等[13]针对我国冶金转炉冶炼周期内工艺波动大、粉尘浓度及比电阻大等情况,提出了三相电源改造思路,提高了除尘器的除尘效率,并优化了电控性能;汤铭等[14]提出了一种低成本高压脉冲静电除尘电源,分析了该高压脉冲电源的稳态工作原理以及电场发生闪络时工作的情况;丁鑫龙等[15]通过实验方法,研究了脉冲电源技术对高比电阻粉尘的脱除特性;张滨渭等[16]研究发现,三相电源适合高粉尘负荷,高频电源在匹配良好条件下可实现较好的提效作用,而脉冲电源更多的研究是针对性地脱除细颗粒物和高比电阻粉尘。

    按输出特性分类,电源可分为电压源和电流源,上述研究多针对干式电除尘器配套的电压源,对于湿式电除尘器配套高压恒流源的供电特性及对电除尘提效及能耗的分析,国内鲜有文献报道。电除尘器供电电源的工作状态直接影响除尘器的运行稳定性及除尘性能,对于湿式电除尘器而言,因其工作在饱和湿烟气状态,且存在喷淋冲洗环节,电场的放电状态变化大、干扰因素多,电源工作的稳定性至关重要。尤其是导电玻璃钢管式湿式电除尘器,鉴于其阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。近年来,因火花控制不当等原因,山西、河南、山东等地频有导电玻璃钢管式湿式电除尘器着火事故报道。本研究通过实验室研究及现场实测相结合的手段,定量分析了导电玻璃钢管式湿式电除尘器的高压恒流源供电特性及其对电除尘提效、能耗的影响,为后续湿式电除尘器的性能提升及节能优化提供参考。

    湿式电除尘器实验系统如图1所示,通过燃油热风炉产生高温烟气,设计烟气量为1×104 m3·h−1,炉膛出口烟气温度控制在70 ℃左右。通过飞灰料仓、文丘里射流器向实验系统内喷射燃煤飞灰。通过浓硫酸电加热方式产生气态SO3,以恒定流量均匀注入系统,并通过混流装置将其与烟气充分混合。通过向烟道内喷水增湿,使烟气达到湿饱和,并控制湿式电除尘器入口烟气温度在50 ℃左右。湿式电除尘器为导电玻璃钢管式湿式电除尘器,阳极板为正六边形(内切圆直径为φ300 mm),阳极管长度为4.7 m,湿式电除尘器的总集尘面积约为180 m2,阴极线为合金锯齿线,喷淋系统每次冲洗时间为5 min,冲洗水量约为0.2 t。湿式电除尘器的供电电源分别有72 kV/100 mA工频高压恒流源、恒压源和72 kV/200 mA高频高压恒流源,不同电源间可灵活切换。湿式电除尘器出口布置CEMS,用于监测出口烟气中的烟尘浓度,在实验期间,采用手工测试方法对CEMS进行数据校准。

    图 1  湿式电除尘器实验系统
    Figure 1.  Experiment system of wet electrostatic precipitator

    工频电源是目前电除尘器应用最为成熟和应用最多的电源[17-18]。工频恒压源输出电压恒定且可控,电流随负载变化;恒流源输出电流恒定且可控,电压随负载变化[19-21]。首先,参照行业标准《电除尘器设计、调试、运行、维护安全技术规范》(JB/T 6407-2017)的相关规定,分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行空载升压实验,对应的一次电压/电流、二次电压/电流分别如图2(a)图2(b)所示。在空载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号基本一致。

    图 2  空载升压实验结果
    Figure 2.  Test results of no-load boost

    控制湿式电除尘器入口烟气温度为50 ℃,烟尘浓度为51.5 mg·m−3,SO3浓度为9 mg·m−3(大约为当前超低排放机组中湿法脱硫出口的SO3平均浓度[21])。烟尘浓度的测定采用ZR-D09A型一体化采样枪和ZR-3260型自动烟尘测试仪,测试方法符合行业标准《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836-2017)的相关规定。SO3测定采用国家标准《燃煤烟气脱硫设备性能测试方法》(GB/T 21508-2008)所规定的控制冷凝法,采样系统如图3所示,水浴温度为65 ℃,多级冷凝装置为两级蛇形盘管,采样枪加热温度>280 ℃,抽气流量为20 L·min−1。采样后,用去离子水清洗蛇形盘管,之后用DR 6000型分光光度计测定溶液中的硫酸根,换算得到SO3浓度值。在上述带负载工况下,再次分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行升压实验,对应的一次电压/电流、二次电压/电流分别如图4(a)图4(b)所示。在负载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号一致性仍较好,且与空载升压时所示的运行电源参数相比差异不大。经测定,72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下湿式电除尘器出口烟尘、SO3浓度及其脱除效率如图5所示,两者的污染物脱除性能也大致相当。

    图 3  SO3采样系统
    Figure 3.  SO3 sampling system
    图 4  负载升压实验结果
    Figure 4.  Test results of load boost
    图 5  湿式电除尘器(WESP)对烟尘、SO3的脱除性能
    Figure 5.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP)

    开启湿式电除尘器的喷淋系统,开启后约5 s后电场出现闪络,此时电源的二次电压、二次电流分别如图6(a)图6(b)所示。对于工频恒流源来说,电源检测到火花放电后,自动下调电源运行参数,使得电流/电压稳定运行在相对较低的参数范围。虽然仍会有零星放电发生,但电源运行参数相对平稳,且喷淋系统关闭后,电源可自动回复到原设定参数运行。对于工频恒压源来说,在喷淋开启初期阶段,电场内频繁产生火花放电,电源运行参数不稳定,有一段明显的振荡区,且喷淋系统关闭后,其电源参数的回复过程也较恒流源慢一些。这是因为,恒流源输出特性受负载干扰产生的电流变量的约束,负载特性总能回到原来的平衡点,工作状态都是稳定的;恒压源输出存在不稳定的工作点,抗干扰能力差,喷淋系统开启后会使电除尘器进入负阻区,电流瞬间增大、电压下降,产生火花击穿,然后电源保护,停止供电,电压源既不能约束负载电压的减少又不能约束负载电流的增加,因而失去对负载的控制能力,造成电源运行参数振荡。

    图 6  喷淋系统开启时二次电压/二次电流
    Figure 6.  Secondary voltage/secondary current curve when the spray system was turned on

    为研究不同电源供电特性对湿式电除尘器性能的影响,分别调取2种电源供电时湿式电除尘器出口CEMS测得烟尘浓度数据,显示喷淋系统开启前后湿式电除尘器出口烟尘浓度变化,结果如图7(a)图7(b)所示。喷淋系统开启后,随着电源运行参数的降低,烟尘排放浓度均有不同程度的增加,其中,工频恒流源供电时,湿式电除尘器出口烟尘浓度最大值为10.3 mg·m−3,较喷淋前平均值(9.2 mg·m−3)增加了约12%;但恒压源存在一个电源参数振荡区,此时,出口烟尘浓度最大值达25.9 mg·m−3,较喷淋前平均值(10.5 mg·m−3)增加了约147%。因此,对于湿式电除尘器而言,应优先考虑采用抗干扰能力强的恒流源,尤其是导电玻璃钢管式湿式电除尘器,由于其阳极管内壁材料的特殊性,因此,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。

    图 7  喷淋系统开启时湿式电除尘器出口烟尘浓度的变化
    Figure 7.  Change of dust concentration at the outlet of wet electrostatic precipitator when the spray system was turned on

    参照JB/T 6407-2017的相关规定,分别对72 kV/200 mA高频高压恒流源进行空载、负载升压实验,对应的一次电压/电流、二次电压/电流曲线及与工频恒流源对比分别如图8图9所示。在负载条件下,高频电源的一次、二次电压/电流信号与空载升压时所示的运行电源参数相比差异不大。值得注意的是,空载实验前实际上也已通过湿烟气,只是空载时临时停掉了风机跟加灰装置,所以湿电场内的烟气仍基本处在湿饱和状态。推测是因湿电场内湿饱和烟气中水分子导电性能好,因此,运行电流较大,是否有烟气流动及飞灰加入,对升压实验的结果影响不大,这与某实际工程项目的通水升压实验/锅炉投运升压实验规律[18-19]一致。与工频恒流源相比,高频电源的功率因数更高,一般情况下,功率周数≥0.92,有效电能的转化率高,同样具有电除尘负载跟踪特性和火花抑制特性的自适应特点。因此,在相同的供电电压条件下,高频电源的运行电流更大,且在额定容量放开运行时,二次电压、二次电流可分别高达60 kV、300 mA,这更有利于湿式电除尘器的污染物脱除性能的提升。

    图 8  空载升压实验结果
    Figure 8.  Test results of no-load boost
    图 9  负载升压实验结果
    Figure 9.  Test results of load boost

    为进一步分析高频与工频恒流源,对湿式电除尘器的提效特性,分别在相同供电电耗及高频恒流源最大电耗条件下,测定湿式电除尘器对烟尘及SO3的脱除性能。根据国家标准《电除尘器性能测试方法》(GB/T 13931-2017)的规定,采用三相有功电能表测定不同电源配置实验期间湿式电除尘器的电耗,分别记录电能表读数和测量时间,并参照式(1)计算湿式电除尘器电耗。

    W=W2W1t (1)

    式中:W为湿式电除尘器电耗,kW;W2为测量后电能表读数,kWh;W1为测量前电能表读数,kWh;t为测量时间,h。

    分别在工频恒流源电耗3.49 kW,高频恒流源电耗3.54、5.89、9.84和16.26 kW条件下,测定湿式电除尘器出口烟尘及SO3质量浓度,结果如图10所示。在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,湿式电除尘器出口的烟尘、SO3浓度变化不大,可以认为两者具有相同的污染物脱除性能。分别将高频电源的电耗提高至5.89、9.84和16.26 kW,湿式电除尘器出口的烟尘、SO3浓度不断降低,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%和66.67%。与烟尘的减排幅度相比,SO3减排幅度略小,这主要是因为此时SO3是以硫酸气溶胶颗粒的形式存在,粒径小(纳米级),驱进速度低,且荷电后的气溶胶颗粒还会在放电极周围产生空间电荷效应[20-23],影响电场放电。

    图 10  不同电源供电时湿式电除尘器(WESP)对烟尘和SO3的脱除性能
    Figure 10.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP) at different power supply

    另外,值得注意的是,随着供电电耗的增加,湿式电除尘器出口的烟尘、SO3浓度虽然不断降低,但减排幅度与电耗的增加并非呈线性关系,高频电源的供电电耗从3.54 kW增加至5.89 kW,仅增加了2.35 kW电耗,烟尘、SO3的减排幅度分别为46.30%、42.86%;但从9.84 kW增加至16.26 kW,电耗增加了6.42 kW,烟尘的减排幅度仅从70.98%增加至78.69%,增加了不足8个百分点,SO3的减排幅度仅从57.14%增加至66.67,增加了约9个百分点。因此,从节能角度来说,在满足5 mg·m−3超低排放要求的前提下,可适当减少湿式电除尘器的电能消耗,尤其是针对湿式电除尘器运行在2.5 mg·m−3甚至1 mg·m−3以下的工况,节能空间较大。该发现可为实际工程项目的节能优化运行提供有效的数据支撑。

    某660 MW机组锅炉为亚临界压力中间再热式直流炉,原配套双室四电场电除尘器出口烟尘浓度为35.7 mg·m−3,经石灰石-石膏湿法脱硫的协同除尘后仍无法满足超低排放要求,因此,在脱硫吸收塔出口烟气烟道上增设导电玻璃钢管式湿式电除尘器,分体(独立)布置,共布置4个电室,阳极采用正六边形导电玻璃钢,阴极线采用锯齿线型,喷淋系统采用间断冲洗方式,冲洗后的水进入吸收塔集水坑,作为脱硫部分用水。配套80 kV/1 600 mA高频高压恒流源。烟气量为2 127 660 m3·h−1,入口烟气温度为49~53 ℃,煤的水分、灰分、硫分含量分别为7.79%、16.59%、1.2%,低位发热量为21.4 kJ·g−1

    采用ZR-D09A型一体化采样枪、ZR-3260型自动烟尘测试仪、DEKATI PM2.5测定装置、DR 6000型分光光度计、ZR-D03A型高温采样枪等测试仪器分别测定湿式电除尘器进、出口的烟尘浓度、PM2.5浓度和SO3浓度等,并将三相有功电能表安装在湿式电除尘器除尘变出口母线处,用于读取并计算湿式电除尘器的电耗。

    PM2.5测试采用DEKATI公司的PM2.5测试装置,测试方法参照行业标准《火电厂烟气中细颗粒物(PM2.5)测试技术规范重量法》(DL/T 1520-2016)中的规定,采样枪温度宜控制在(160 ±5)℃,PM2.5测定装置如图11所示。装置由三级撞击器组成,每级撞击器上布置滤膜,并涂上耐高温松脂,分别用于收集大于10、2.5、1 μm的颗粒,在最末级布置石英滤膜,石英滤膜对0.3 μm颗粒的拦截效率达99.9%,最末级撞击器和滤膜收集的颗粒累计为PM2.5,后二级撞击器和滤膜收集的颗粒累计为PM10。为防止液滴对颗粒分级及铝箔集尘的影响,对撞击器进行加热保温,温度为120 ℃。PM2.5的采样系统如图12所示。根据烟道流速、温度、压力等参数,选择合适的采样嘴及抽气流量,以保证各级撞击器收集的颗粒粒径在规定范围内。

    图 11  PM2.5测定装置
    Figure 11.  PM2.5 measurement device
    图 12  PM2.5采样系统
    Figure 12.  PM2.5 sampling system

    分别在满负荷、90%负荷、75%负荷、50%负荷条件下,测定湿式电除尘器对各污染物的脱除性能。烟尘测试结果如图13所示,随着机组负荷的降低,湿式电除尘器入口烟尘浓度有所降低,从19.6 mg·m-3降至16.8 mg·m−3,推测是因为负荷降低,烟气流速下降,前端电除尘器的除尘性能提升[24-25]所致。机组负荷降低,烟气流速下降,湿式电除尘器的除尘性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%。SO3测试结果如图14所示,随着负荷降低,湿式电除尘器入口的SO3浓度也有所下降,这主要是因为负荷降低后SCR脱硝的烟气温度降低,此处的SO2/SO3转化率减小[26-28]。同烟尘类似,烟气流速下降,湿式电除尘器对SO3气溶胶颗粒的脱除性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对SO3的脱除效率分别为68.79%、70.59%、74.47%、76.64%,较烟尘的脱除效率要低一些。PM10/PM2.5测试结果如图15所示,随着负荷的降低,前端电除尘器对PM10/PM2.5的脱除性能提升,湿式电除尘器入口浓度均有所下降,同时,烟气流速下降,湿式电除尘器除尘也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对PM10的脱除效率分别为77.04%、77.86%、79.44%、83.15%,对PM2.5的脱除效率分别为72.28%、72.63%、75.31%、80.14%。

    图 13  烟尘浓度测试结果
    Figure 13.  Test results of smoke concentration
    图 14  SO3浓度测试结果
    Figure 14.  Test results of SO3 concentration
    图 15  PM10/PM2.5浓度测试结果
    Figure 15.  Test results of PM10/PM2.5 concentration

    为科学评价电除尘器的电耗水平,《高效能大气污染物控制装备评价技术要求第2部分:电除尘器》(GB/T 33017.2-2016)中给出了比电耗的概念,即处理单位工况烟气量所消耗的电量,计算方法如式(2)所示。

    C=WQ (2)

    式中:C为湿式电除尘器比电耗,kWh·m−3W为湿式电除尘器的电耗,kW;Q为进入湿式电除尘器入口的工况烟气量,m3·h−1

    为对比不同负荷条件下湿式电除尘器的高压电耗,式(2)忽略了低压电耗、引风机阻力电耗等对比电耗的影响,湿式电除尘器的高压供电电耗采用三相有功电能表测定,经计算,不同负荷条件下,湿式电除尘器的高压供电比电耗如图16所示。随着负荷的降低,湿式电除尘器的高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,在满足5 mg·m-3超低排放要求的前提下,最大幅度地降低比电耗,实现节能最优化。节能优化后的比电耗结果如图17所示,湿式电除尘器的高压供电比电耗降幅显著,以50%负荷为例,节能优化后,比电耗从4.57×10−4 kWh·m−3降至0.7×10−4 kWh·m−3,节能优化后的比电耗下降达84.68%,即便是对于满负荷工况,烟尘浓度从3.7 mg·m−3增到4.5 mg·m−3,比电耗也下降了12.86%。该节能优化思路同样适用于其他工程项目及满负荷时烟尘排放远低于超低排放限值要求的工况。

    图 16  湿式电除尘器比电耗
    Figure 16.  Specific power consumption of WESP
    图 17  节能优化后湿式电除尘器比电耗
    Figure 17.  Specific power consumption of WESP after energy saving optimization

    对其他3个导电玻璃钢湿式电除尘项目实施上述节能优化实验,相关数据如表1所示。在满负荷条件下,3个项目原烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,此时比电耗下降幅度分别为32.65%、27.15%、41.64%。对应节能优化前后的SO3、PM10/PM2.5浓度测试结果分别如图18图19所示。节能优化后,污染物排放浓度略有升高,但均在可承受范围内,如SO3浓度未超过5 mg·m−3,不会出现烟囱蓝烟拖尾的风险。值得注意的是,目前实际上有许多电厂的烟尘排放在2.5 mg·m−3甚至1 mg·m−3以下[29-37],此时的高压供电比电耗值较高,具有较大的节能优化空间,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

    表 1  工程数据汇总
    Table 1.  Project data summary
    序号机组/MW电源配置设计出口烟尘浓度/(mg·m−3)原排放浓度及电耗节能优化后指标比电耗下降幅度/%
    烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)
    130072 kV/1 200 mA高频高压恒流源<51.95.884.23.9632.65
    266072 kV/1 200 mA高频高压恒流源<52.74.314.13.1427.15
    31 00080 kV/1 600 mA高频高压恒流源<51.23.294.01.9241.64
     | Show Table
    DownLoad: CSV
    图 18  SO3浓度测试结果
    Figure 18.  Test results of SO3 concentration
    图 19  PM10/PM2.5浓度测试结果
    Figure 19.  Test results of PM10/PM2.5 concentration

    1)在正常工况下,工频高压恒流源和恒压源的空载/负载伏安特性曲线差别不大,两者的污染物脱除性能也大致相当。一旦喷淋系统开启,恒流源检测到火花放电后,自动下调电源运行参数,使电流/电压稳定运行在相对较低的参数范围,且运行相对平稳。恒压源则有一段明显的振荡区,抗干扰能力差。湿式电除尘器出口CEMS数据显示,喷淋系统开启后,工频恒流源供电的湿式电除尘器出口烟尘浓度最大值较喷淋前平均值增加了约12%;但恒压源因存在一个电源参数振荡区,出口烟尘浓度增加了约147%。因此,对于湿式电除尘器而言,应优先考虑抗干扰能力强的恒流源。

    2)在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,工频恒流源和高频恒流源供电的湿式电除尘器污染物脱除性能差异不大。但额定容量放开运行时,高频电源的运行电压/电流参数变大,其供电电耗分别提高至5.89、9.84、16.26 kW时,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%、66.67%。

    3)某660 MW机组典型工程的深度测试表明,随负荷的降低,湿式电除尘器的污染物脱除性能有所提升,在满负荷、90%负荷、75%负荷、50%负荷条件下,湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%,SO3脱除效率分别为68.79%、70.59%、74.47%、76.64%,PM10脱除效率分别为77.04%、77.86%、79.44%、83.15%,PM2.5脱除效率分别为72.28%、72.63%、75.31%、80.14%。但随负荷的降低,湿式电除尘器高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10-4 kWh·m-3升至4.57×10-4 kWh·m-3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m-3,比电耗显著降低,满负荷的比电耗也下降了12.86%,50%负荷的比电耗下降达84.68%,实现了湿式电除尘器的节能优化运行。

    4)根据本研究得到的节能优化思路,对其他3个工程项目实施运行优化,优化前烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。该思路同样适用于其他除尘项目及满负荷时烟尘排放远低于超低排放限值(5 mg·m−3)要求的工况,尤其是部分烟尘排放长期在2.5 mg·m−3甚至1 mg·m−3以下项目,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

  • 图 1  不同活性炭对尿液的吸附效果

    Figure 1.  Adsorption performance of different activated carbons toward urine

    图 2  不同铁氧化物对TOC吸附的影响

    Figure 2.  Effect of different iron oxides on TOC removal efficiency

    图 3  不同铁氧化物对PO34-P、TP吸附的影响

    Figure 3.  Effect of iron oxides on the removal efficiencies of PO34-P and TP

    图 4  不同铁氧化物对尿液NH+4-N、TN的影响

    Figure 4.  Effect of iron oxides on the removal efficiencies of NH+4-N and TN

    图 5  尿液预处理对TOC的影响

    Figure 5.  Effect of urine pretreatment on TOC removal efficiency

    图 6  尿液预处理对PO34-P、TP的影响

    Figure 6.  Effect of urine pretreatment on the removal efficiencies of PO34-P and TP

    图 7  尿液预处理对NH+4-N、TN的影响

    Figure 7.  Effect of urine pretreatment on the removal efficiencies of NH+4-N and TN

    表 1  活性炭比表面积和孔容积

    Table 1.  Specific surface and pore volume of activated carbon

    活性炭比表面积/(m2·g−1)总孔容积/(cm3·g−1)微孔容积/(cm3·g−1)介孔容积/(cm3·g−1)大孔容积/(cm3·g−1)
    椰壳566.518 70.294 40.243 80.047 80.002 8
    果壳516.312 40.267 50.211 50.051 00.004 9
    木质310.526 00.337 30.012 10.302 60.022 6
    活性炭比表面积/(m2·g−1)总孔容积/(cm3·g−1)微孔容积/(cm3·g−1)介孔容积/(cm3·g−1)大孔容积/(cm3·g−1)
    椰壳566.518 70.294 40.243 80.047 80.002 8
    果壳516.312 40.267 50.211 50.051 00.004 9
    木质310.526 00.337 30.012 10.302 60.022 6
    下载: 导出CSV
  • [1] 董良飞, 蒋健钗, UDERT K M, 等. 尿液源头分离系统中的沉淀研究[J]. 环境工程学报, 2008, 2(7): 964-968.
    [2] 蒋善庆, 王晓昌, 李超, 等. 源分离尿液资源化利用与风险控制技术研究进展[J]. 安全与环境学报, 2014, 14(5): 174-182.
    [3] 朱国荣, 谢倍珍, 刘红. 载人深空探测活动中的尿液处理回收技术分析[J]. 深空探测学报, 2018, 5(6): 582-590.
    [4] 杨祺, 张文瑞, 于锟锟. 空间站尿液处理技术研究及进展[J]. 真空与低温, 2014, 20(6): 315-318. doi: 10.3969/j.issn.1006-7086.2014.06.002
    [5] 王健行. 密闭生保系统中基于盐回收的纳滤膜技术及膜污染防治[R]. 北京: 中国科学院生态环境研究中心博士后出站报告, 2016.
    [6] SOLANKI A, BOYER T H. Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine[J]. Chemosphere, 2019, 218: 818-826. doi: 10.1016/j.chemosphere.2018.11.179
    [7] PRADHAN S K, MIKOLAA, CAHALA R. Nitrogen and phosphorus harvesting from human urine using a stripping, absorption, and precipitation process[J]. Environmental Science & Technology, 2017, 51(9): 5165-5171.
    [8] 温国期, 胡正义, 刘小宁, 等. 改性沸石吸附柱去除和回收脱磷尿液废水中氨氮试验研究[J]. 农业环境科学学报, 2013, 32(12): 2488-2494. doi: 10.11654/jaes.2013.12.023
    [9] LAIRD D, FLEMING P, WANG B, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 436-442.
    [10] XU K, LIN F, DOU X, et al. Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides[J]. Journal of Cleaner Production, 2018, 187: 205-214. doi: 10.1016/j.jclepro.2018.03.206
    [11] KUSIOR A, MICHALEC K, JELEN P, et al. Shaped Fe2O3 nanoparticles-synthesis and enhanced photocatalytic degradation towards RhB[J]. Applied Surface Science, 2019, 476: 342-352. doi: 10.1016/j.apsusc.2018.12.113
    [12] 吴承慧, 陈长安, 高旭波, 等. 改性纳米级Fe3O4对地下水中氟的吸附性能研究[J]. 环境科学与技术, 2019, 42(6): 82-88.
    [13] 张斌, 韩宇霞, 赵斯琴, 等. 纳米γ-氧化铁的制备及其吸附性能研究[J]. 无机盐工业, 2019, 51(6): 76-79.
    [14] 黎想, 任彦瑛, 丁琳洁. 预磁化零价铁活化过硫酸盐体系降解双氯芬酸钠[J]. 环境工程学报, 2019, 13(12): 2808-2815. doi: 10.12030/j.cjee.201901116
    [15] 甘莉, 曹丹, 金晓英, 等. 离子型表面活性剂改性绿色合成单分散纳米氧化铁的制备及其吸附磷的性能[J]. 环境科学学报, 2015, 35(8): 2442-2449.
    [16] 李婷, 朱易春, 康旭, 等. 海绵铁还原微污染源水中硝酸盐氮的影响因素研究[J]. 工业水处理, 2016, 36(11): 85-89.
    [17] JIA Z, LIU J, WANG Q, et al. Synthesis of 3D hierarchical porous iron oxides for adsorption of congo red from dye wastewater[J]. Journal of Alloys and Compounds, 2015, 622: 587-595. doi: 10.1016/j.jallcom.2014.10.125
    [18] WANG J, XU L, ZHANG Z, et al. Shape-controlled synthesis of α-Fe2O3 nanocrystals for efficient adsorptive removal of Congo red[J]. RSC Advances, 2015, 5(61): 49696-49702. doi: 10.1039/C5RA06324H
    [19] 刘锦华. 四种吸附材料对蓝/红物质的吸附作用及黑臭水体光学特性研究[D]. 广州: 广东工业大学, 2018.
    [20] UDERT K M, LARSEN T A, BIEBOW M, et al. Urea hydrolysis and precipitation dynamics in a urine-collecting system[J]. Water Research, 2003, 37(11): 2571-2582. doi: 10.1016/S0043-1354(03)00065-4
    [21] LIU Z, ZHAO Q, WANG K, et al. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine[J]. Journal of Environmental Sciences, 2008, 20(8): 1018-1024. doi: 10.1016/S1001-0742(08)62202-0
    [22] 曾俊钦, 邱春生, 孙力平, 等. 储存控制条件对尿液氮磷的影响[J]. 环境工程学报, 2016, 10(10): 5605-5610. doi: 10.12030/j.cjee.201505094
    [23] ZHU K, FU H, ZHANG J, et al. Studies on removal of NH+4 -N from aqueous solution by using the activated carbons derived from rice husk[J]. Biomass and Bioenergy, 2012, 43: 18-25. doi: 10.1016/j.biombioe.2012.04.005
    [24] ZHANG S, ZHAO X, NIU H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167(1): 560-566.
    [25] 宋冬. 零价铁强化低碳源城市污水处理厂脱氮除磷效果研究[D]. 西安: 长安大学, 2016.
    [26] 付丰连. 零价铁处理污水的最新研究进展[J]. 工业水处理, 2010, 30(6): 1-4. doi: 10.3969/j.issn.1005-829X.2010.06.001
    [27] HUANG X. Intersection of isotherms for phosphate adsorption on hematite[J]. Journal of Colloid and Interface Science, 2004, 271(2): 296-307. doi: 10.1016/j.jcis.2003.12.007
    [28] ZHU Z, HUANG C P, ZHU Y, et al. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water[J]. Journal of Water Process Engineering, 2018, 25: 96-104. doi: 10.1016/j.jwpe.2018.05.010
    [29] 席宏波, 廖娣劼, 尚海涛, 等. 纳米铁除磷的影响因素及吸附模式研究[J]. 给水排水, 2008, 44(S1): 191-195.
    [30] 张颖纯, 王伟. 纳米零价铁颗粒除磷反应机理[J]. 环境工程学报, 2015, 9(5): 2041-2047. doi: 10.12030/j.cjee.20150502
    [31] 冯皓迪, 丁一珊, 崔梦萦, 等. MAP法沉淀回收尿液中氮磷的研究[J]. 环境工程, 2016, 34(S1): 162-166.
    [32] 李春霞, 赵成坚, 祝迎春. 基于K2Cr2O7/H2SO4体系的尿预处理剂对尿液的影响[J]. 航天医学与医学工程, 2016, 29(2): 133-136.
    [33] 刘斌, 顾洁, 邱盼, 等. 稻壳与脱硅稻壳活性炭特性及对有机物吸附[J]. 林产化学与工业, 2014, 34(5): 27-34.
    [34] LIANG H, LIU K, NI Y. Synthesis of mesoporous α-Fe2O3 using cellulose nanocrystals as template and its use for the removal of phosphate from wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 474-479. doi: 10.1016/j.jtice.2016.12.008
    [35] LI G, GAO S, ZHANG G, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)-copper(II) binary oxides[J]. Chemical Engineering Journal, 2014, 235: 124-131. doi: 10.1016/j.cej.2013.09.021
    [36] 蒋善庆, 王晓昌. 黄土颗粒吸附水解尿液中磷酸盐特性及机制[J]. 化工进展, 2017, 36(7): 2667-2675.
  • 加载中
图( 7) 表( 1)
计量
  • 文章访问数:  4485
  • HTML全文浏览数:  4485
  • PDF下载数:  53
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-21
  • 录用日期:  2020-03-01
  • 刊出日期:  2020-12-10
焦赟仪, 郑利兵, 魏源送, 周书葵. 铁氧化物对活性炭处理尿液的影响[J]. 环境工程学报, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
引用本文: 焦赟仪, 郑利兵, 魏源送, 周书葵. 铁氧化物对活性炭处理尿液的影响[J]. 环境工程学报, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
JIAO Yunyi, ZHENG Libing, WEI Yuansong, ZHOU Shukui. Effect of iron oxides on urine treatment by activated carbon[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130
Citation: JIAO Yunyi, ZHENG Libing, WEI Yuansong, ZHOU Shukui. Effect of iron oxides on urine treatment by activated carbon[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3381-3390. doi: 10.12030/j.cjee.201912130

铁氧化物对活性炭处理尿液的影响

    通讯作者: 周书葵(1965—),男,硕士,教授。研究方向:污染控制与资源化。E-mail:zhoushukui@usc.edu.cn
    作者简介: 焦赟仪(1995—),女,硕士研究生。研究方向:水污染控制与资源化。E-mail:hncsjyy163@163.com
  • 1. 南华大学土木工程学院,衡阳 421001
  • 2. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 3. 中国科学院生态环境研究中心,水污染控制实验室,北京 100085
基金项目:
国家自然科学基金青年基金资助项目(51908539);中国-斯里兰卡水技术研究与示范联合中心项目

摘要: 采用椰壳、果壳和木质活性炭进行尿液处理,分别研究了铁氧化物及尿液预处理对椰壳炭处理尿液的影响。结果表明:椰壳炭的比表面积最高,具有最佳的尿液处理效果,对TOC、PO34-P、TP、NH+4-N和TN的去除率可达35.02%、8.17%、11.98%、39.42%和14.79%;投加的铁氧化物对P的去除效果较好,去除率提高了14%,且酸预处理进一步提升了P的去除效果,去除率提高了9.29%;但在酸性条件下,有机物和NH+4-N的吸附能力略有所下降;吸附过程对有机物的削减主要是由于活性炭的吸附及尿素的分解所致;N去除的主要机理是由于鸟粪石的沉淀所致;P削减的主要原因为铁氧化物表面的羟基位点吸附和鸟粪石沉淀,酸性条件可促进铁氧化物和PO34发生质子化过程,因此,其可进一步强化P的去除。综合上述结果,铁氧化物-活性炭吸附可有效去除尿液中有机物和P,是一种有效的尿液预处理工艺,以上结果可为尿液的处理和回收提供参考。

English Abstract

  • 随着航空航天和深空探测的发展,保障长期载人航天任务及空间站的运行成为关键,环境控制生命保障系统(environmental control and life support system, ECLSS)因其可实现物质循环和食物的自给而得到广泛的研究,其中的水处理与循环系统是重要的保障之一。ECLSS中水处理与循环系统主要包括卫生废水、冷凝水、相变水和尿液等废水的处理及回用,其中尿液成分复杂,性质不稳定,盐类、营养元素(如N、P、K)及有机物的浓度高[1]。同时尿液中存在多种微量污染物和致病微生物,传统污水处理方法难以有效去除,对人类和环境具有显著的潜在风险[2]。因此,尿液的处理与回收是载人航天生命保障系统发展的关键[3]

    目前,ECLSS中尿液的处理与回收主要应用膜分离技术[4],但其存在严重的盐结垢及有机物膜污染,成为ECLSS中水循环利用系统研究的主要攻关难点[5]。吸附是一种广泛应用的净水技术,已广泛应用于膜过程的预处理中。SOLANKI等[6]研究表明,吸附可有效去除尿液中药物污染物和有机物,也可实现尿液中N、P的去除与回收[7-8]。活性炭是目前应用最广泛的经济型吸附剂,其巨大的比表面积及表面非极性和极性位点可有效吸附营养元素及有机物[9]。XU等[10]研究表明,采用改性碳基吸附材料对尿液中N和P的吸附能力可达48 mg·g−1和116 mg·g−1。由于铁元素具有多种形态和价态而表现出不同的性质和性能[11-13],近年来铁氧化物作为吸附剂在水处理中受到广泛研究与应用[14]。相关研究[15-16]表明,铁氧化物可有效去除水中N、P等污染物。JIA等[17]研究发现,α-Fe2O3、γ-Fe2O3、Fe3O4等铁氧化物具有较高的比表面积及丰富的吸附位点,且其多孔结构有利于污染物的快速扩散,是废水中污染物的优良吸附剂。同时,与其他吸附剂如活性炭相比,其纳米结构因在低温下通过催化燃烧得到,因此,具有更好的再生性能[18]。但将铁氧化物与活性炭结合应用于ECLSS中的尿液处理鲜见报道,相关的吸附性能及机理也有待进一步探究。同时,ECLSS中尿液通常需要进行酸预处理以保障其性质稳定,酸预处理尿液对吸附性能的影响也是评估尿液处理性能的关键。

    本研究针对ECLSS中尿液特点,考察了椰壳、果壳、木质3种活性炭对尿液的吸附性能,考察了不同铁氧化物对活性炭吸附尿液的影响,研究了酸预处理对铁氧化物强化活性炭吸附过程的影响,并对吸附机理进行分析,以期为尿液处理提供一种参考。

  • 实验尿液为收集的健康男性未稀释的新鲜尿液,其中NH+4-N、TN、PO34-P、TP、TOC浓度分别为(520.0±21.0)、(4 157.0±43.0)、(159.0±3.0)、(204.5±8.5)、(4 967.9±349.5) mg·L−1,pH为6.8±0.2,电导率为(18.4±1.8) mS·cm−1

  • 实验材料为椰壳、果壳和木质活性炭(河南环盛炭业有限公司),其比表面积及孔容积见表1。实验试剂包括Fe2O3(分析纯,上海阿拉丁试剂有限公司)、γ-Fe2O3(10 nm,上海阿拉丁试剂有限公司)、α-Fe2O3(30 nm,上海阿拉丁试剂有限公司)、Fe3O4(99%,上海阿拉丁试剂有限公司)、纳米Fe3O4(20~30 nm,上海阿拉丁试剂有限公司)、零价铁(100目,上海阿拉丁试剂有限公司)、抗坏血酸(分析纯,国药集团化学试剂有限公司)、钼酸胺(分析纯,国药集团化学试剂有限公司)、过硫酸钾(分析纯,上海优耐德引用发剂有限公司)、纳氏试剂(哈希中国)、浓硫酸(优级纯,国药集团化学试剂有限公司)、酒石酸钾钠(分析纯,国药集团化学试剂有限公司)。

  • 取25 mL新鲜尿液于50 mL锥形瓶中,根据计算药剂投加量,投加不同吸附剂和铁氧化物,放入振荡培养箱(MQD-S3R,上海旻泉仪器有限公司)中进行吸附,吸附温度为25 ℃,转速为150 r·min−1,吸附时间为24 h,以实现吸附平衡,取上清液过0.45 μm膜并进行检测分析。每组实验进行3次平行实验。

    在进行活性炭优选实验时,准备3个装有25 mL新鲜尿液的锥形瓶,分别投加1 g椰壳活性炭、果壳活性炭、木质活性炭进行吸附。

    在进行铁氧化物强化活性炭吸附实验时,为考察铁氧化物的吸附效果,准备6个装有25 mL新鲜尿液的锥形瓶,分别投加0.2 g的Fe2O3、γ- Fe2O3、α-Fe2O3、Fe3O4、纳米Fe3O4、零价铁进行吸附。为考察铁氧化物强化吸附效果,准备6个装有25 mL新鲜尿液的锥形瓶,向每个锥形瓶中投加1 g活性炭,再分别投加0.2 g的Fe2O3、γ-Fe2O3、α-Fe2O3、Fe3O4、纳米Fe3O4、还原铁粉零价铁进行吸附。为比较铁氧化物投加对污染物去除的影响,计算铁氧化物投加对污染物去除的贡献率(式(1))。

    式中:η为贡献率;a为椰壳炭对污染物的去除率;b为铁系材料与椰壳炭对污染物的总去除率。

    在预处理强化铁氧化物-活性炭吸附实验时,向新鲜尿液中滴加浓硫酸至pH为2进行酸化预处理,量取25 mL预处理尿液和1 g活性炭分别投入2个锥形瓶中,再分别投加0.2 g的α-Fe2O3、纳米Fe3O4进行吸附。

  • 电导率和pH采用便携式多参数水质分析仪(Multi3420,德国WTW)测定;TOC浓度采用TOC分析仪 (TOC-L CPH,日本岛津)测定;NH+4-N、TN、PO34-P、TP浓度采用双光束紫外分光光度计(TU-1901,北京普析通用仪器有限公司)测定,其中NH+4-N采用纳氏试剂比色法(HJ 535-2009),TN浓度采用碱性过硫酸钾紫外分光光度法(GB 11894-1989),PO34-P和TP采用钼酸铵分光光度法(GB 11893-1989)。采用比表面积及孔径分析仪(BET,Micromeritics ASAP2460)检测活性炭比表面积及孔容。

  • 尿液中污染物浓度较高,TN、NH+4-N、TOC、TP、PO34-P分别高达4 157、520、6 000、204.5、159 mg·L−1,电导率为18.4 mS·cm−1,盐浓度较高。因此,采用微生物法进行尿液处理效果不稳定,而采用膜技术处理存在膜污染问题。由图1可知,活性炭对TOC、NH+4-N有较高的去除率,TN的去除率较低,其中椰壳、果壳、木质活性炭对TOC去除率分别为35.02%、25.36%和27.00%,对NH+4-N的去除率分别为39.42%、23.65%和34.03%,但对TN的去除率分别为14.79%、8.44%和5.27%。椰壳活性炭对TOC、TN和NH+4-N的去除效果明显优于木质活性炭和果壳活性炭。由表1可知,椰壳活性炭有最高的比表面积,其总孔容积为0.294 4 cm3·g−1,但微孔容积占比为82.81%,明显高于果壳和木质活性炭,这是椰壳炭吸附性能较高的关键原因。本研究的结果与之前的研究结果[19]一致。果壳和木质活性炭的比表面积分别为516.312 4 m2·g−1和310.526 0 m2·g−1,总孔容积分别为0.267 5 cm3·g−1和0.337 3 cm3·g−1。虽然木质活性炭的总孔容积最高,但其微孔容积显著低于其他2种活性炭,且其比表面积较低,因此,其对TOC的吸附效果与果壳活性炭相似。有机物去除主要是由于活性炭孔道表面对有机物的吸附作用所致;同时,尿素在酶和微生物的作用下会发生分解[20](式(2)),也是有机物削减的另一个重要原因。尿素分解后形成的OH可引起尿液pH升高,同时游离铵浓度增加可导致NH+4、磷酸盐与镁离子结合形成磷酸铵镁沉淀(鸟粪石),这是尿液中N、P浓度下降的主要原因[21-22](式(3))。此外,当pH较高时,水中存在的NH+4易以NH3的形式逸出[23],故NH+4-N浓度降低(式(4))。整体而言,活性炭对P的去除作用较弱,椰壳、果壳、木质活性炭对PO34-P的去除率分别为8.18%、4.4%和6.92%,其对TP的去除率分别为11.98%、8.07%和7.09%。

    综合比较,椰壳活性炭具有最佳的尿液处理效果,处理后的TOC、PO34-P、TP、NH+4-N、TN浓度分别降为3 350、146、180、315、3 542 mg·L−1。P是膜污染过程中的关键无机结垢物质,提升P的去除效果对膜深度处理尿液具有重要意义。因此,本研究进一步采用铁氧化物和椰壳活性炭结合进行尿液的吸附处理。

  • 图2所示,投加8 g·L−1不同铁氧化物和零价铁于尿液中,吸附24 h后TOC的浓度从5 350 mg·L−1降至4 000~4 500 mg·L−1,纳米Fe3O4和零价铁对TOC的去除效果最好,去除率分别为19.82%和18.56%。其原因是纳米Fe3O4具有较大的比表面积,同时可有效降解有机污染物[24];而零价铁因其在水体中易被氧化为Fe2+和Fe3+,生成的多羟基聚合物通过电中和、絮凝作用、吸附架桥的作用能够去除部分有机物[25],同时因为零价铁具有较强的还原性和电化学特性,故可实现有机物的氧化去除[26]。但对比单独椰壳炭的吸附效果可发现,铁氧化物和零价铁的投加对尿液中有机物的去除影响较小。在投加铁氧化物后,TOC的去除率为32.23%~35.81%,而单独活性炭对TOC去除率为35.02%,因此,尿液中TOC的去除主要依靠于椰壳活性炭的吸附作用,铁氧化物对TOC的去除并无显著的促进作用。

    图3所示,铁氧化物的投加显著增强了尿液中P的去除效果,且总磷和磷酸盐的增强效果基本一致,主要原因是尿液中的PO34-P对TP的占例可达80%以上,是尿液中P的主要形态。γ-Fe2O3和α-Fe2O3具有最佳的强化除P效果,投加后,PO34-P的去除率分别达30.19%和27.67%,去除率提升了22.01%和19.49%;TP的去除率分别达到28.61%和26.65%,分别提升了16.63%和14.67%。进一步分析发现,γ-Fe2O3和α-Fe2O3PO34-P去除的贡献率分别为72.90%和70.43%,对TP去除的贡献率分别为58.12%和55.05%。因此,铁氧化物对P的去除具有显著的强化作用,主要原因是铁氧化物具有丰富的羟基,可以与PO34-P结合[27]。零价铁对PO34-P和TP的去除率分别为6.92%和9.54%,其与椰壳炭联合对PO34-P和TP的去除率分别为16.35%和14.91%,相应的去除率分别提升了8.17%和2.93%。其去除机理可能为材料表面基团对PO34的吸附作用、产生的Fe2+/Fe3+PO34的化学沉淀作用和Fe2+/Fe3+水解形成氢氧化物对PO34的吸附作用[28-30]。另外,吸附过程中的尿素水解导致pH升高,磷酸盐与尿液中的NH+4、Mg2+、Ca2+等离子共沉淀形成磷酸铵镁结晶[31]及磷酸钙等沉淀[21](式(5))也是尿液中的P去除主要原因。

    综上所述,铁氧化物特别是γ-Fe2O3和α-Fe2O3,可显著增强椰壳活性炭对P的吸附效果,且铁氧化物是P削减的关键,其主要机制为铁氧化物的吸附作用及其共沉淀作用。

    图4可看出,铁氧化物对N的去除率并不高,Fe2O3、γ-Fe2O3、α-Fe2O3、Fe3O4、纳米Fe3O4、零价铁对NH+4-N的去除率分别为23.65%、7.88%、10.96%、13.07%、6.73%、7.88%,对TN的去除率均低于4%。与活性炭共同投加后,对NH+4-N和TN的去除有一定的强化作用,Fe2O3、γ-Fe2O3、α-Fe2O3、Fe3O4对尿液中NH+4-N的去除率可提高6%~11%,去除率分别达45.58%、50.77%、46.54%、47.69%。但是吸附后的尿液中TN浓度依然较高,从原尿液的4 157 mg·L−1降低至3 600~4 000 mg·L−1

    综上所述,铁氧化物与活性炭联合吸附可以显著强化尿液中P的吸附去除,对N的去除影响较小,对NH+4-N去除率略提高,对有机物去除基本无影响。考虑到尿液的膜处理过程关键在于预处理过程对有机物和结垢物质的去除,铁氧化物强化活性炭吸附过程将成为一种有效的膜预处理工艺。

  • 在ECLSS中通常在尿液中加酸进行预处理,以抑制细菌的滋生和尿液的水解[32],而pH将影响污染物和吸附材料的化学性质,对吸附剂的表面电荷、污染物的电离度以及污染物的分子结构具有较大的影响[18],因此,考察预处理条件下的吸附性能对尿液处理具有重要意义。铁氧化物和零价铁的吸附实验结果表明,γ-Fe2O3、α-Fe2O3和纳米Fe3O4具有较好的强化吸附效果,而α-Fe2O3和纳米Fe3O4具有更稳定的吸附性能,因此,选取α-Fe2O3、纳米Fe3O4考察酸预处理对尿液中污染物的影响。

    图5可知,尿液预处理后,TOC的去除效果降低,投加α-Fe2O3和纳米Fe3O4组中TOC浓度均高于未经预处理组的浓度,TOC去除率分别为27.88%和25.87%,相比未经预处理的尿液分别下降了6.5%和9.94%。其原因可能为:一是酸性条件下活性炭表面产生基团质子化,与有机物中氨基正离子产生静电排斥作用[33],对有机物的吸附性能下降;二是酸性条件抑制了尿液中尿素的水解,因此,预处理后尿液中的TOC比未预处理尿液中的去除率更低。

    针对经过酸预处理的尿液,由图6可知,PO34-P和TP浓度均低于未经预处理组的浓度,这表明尿液预处理进一步提升了铁氧化物-椰壳炭对P的吸附。α-Fe2O3和纳米Fe3O4投加组对PO34-P的去除率分别为30.19%和32.7%,对TP的去除率分别为28.60%和23.23%;对PO34-P去除率分别提高了2.51%和8.8%,对TP的去除率分别提高了1.96%和9.29%。铁氧化物对磷酸盐的吸附机理主要为磷酸盐与氧化铁表面羟基结合,但其受pH的影响:对吸附剂铁氧化物而言,当pH较低时,铁氧化物表面羟基发生质子化,即表面正电位增加(式(6)),与带负电的阴离子之间的结合力增强,对PO34的吸附能力增加[34];而碱性条件下,金属氧化物表面发生去质子化过程,负电荷增加(式(7)),使得PO34与氧化物之间产生排斥作用[35],不利于金属氧化物与PO34相互作用;对磷酸盐而言,不同pH条件下磷酸盐发生扩散平衡[36] (式(8)~式(10)),随pH的增加,PO34负电性越强,因此,在低pH中PO34更易与金属化合物结合。综上所述,在酸性条件下,铁氧化物与PO34的质子化过程强化了两者之间的结合(式(11)),磷酸盐主要以质子化合物的形式被吸附[27] (式(11)~式(13))。

    在铁氧化物-椰壳炭吸附尿液过程中,NH+4-N的去除主要依靠活性炭的吸附及鸟粪石沉淀作用,溶液中pH的变化对NH+4-N去除有重要影响。由图7可知,在投加纳米Fe3O4和α-Fe2O3后,其对预处理尿液的NH+4-N的去除率分别为36.15%和33.08%,比对未经预处理的尿液下降了13.46%和2.13%。主要原因归为2点:一方面,酸性条件下H+与游离氨反应,使得N元素以NH+4的形式被固定,减少了氨气的挥发[32];另一方面,当pH较低时,有较多的H3O+NH+4-N竞争活性炭上的离子交换位点,从而抑制NH+4-N的去除,且pH越低,NH+4-N的去除效果越差[23]。此外,酸性条件不利于磷酸铵镁结晶,也是NH+4-N去除率下降的一个重要原因。但酸预处理对TN去除基本无影响,投加纳米Fe3O4和α-Fe2O3的实验组中TN的去除率分别为10.99%和13.00%,比未经预处理组分别提高了1.63%和1.62%。

    综上所述,尿液预处理后可显著抑制鸟粪石结晶的形成和尿素分解,故导致有机物和NH+4-N的吸附效果略有下降。但酸性条件下铁氧化物表面羟基和PO34的均发生了质子化作用,强化了两者的结合,因此,增强了P的去除效果。

  • 1)活性炭可有效去除尿液中TOC和NH+4-N,对TN、PO34-P、TP的去除作用较弱。活性炭处理尿液的吸附性能椰壳活性炭>木质活性炭>果壳活性炭,椰壳活性炭对TOC、PO34-P、TP、NH+4-N、TN的去除率分别为35.02%、8.17%、11.98%、39.42%、14.79%。

    2)铁氧化物和零价铁对活性炭吸附TOC的影响较小,有机物去除主要机理是活性炭吸附和尿素分解;对NH+4-N的去除略有提高,Fe3O4增强NH+4-N去除率的效果最佳,最高增强了11%,主要去除机制为吸附和鸟粪石沉淀;对PO34-P、TP的去除有明显强化作用,其中,γ-Fe2O3和α-Fe2O3PO34-P、TP的去除强化作用最为显著,γ-Fe2O3PO34-P和TP的去除率分别提高了22.01%和16.63%,α-Fe2O3PO34-P、TP的去除率分别提高了19.49%和14.67%;P去除的主要机制为铁氧化物表面的羟基对PO34-P的吸附及鸟粪石沉淀。

    3)尿液酸预处理将降低铁氧化物-椰壳炭对TOC和NH+4-N的吸附作用,同时提升对P的吸附,且纳米Fe3O4投加对P的吸附效果高于α-Fe2O3,其对PO34-P和TP的去除率分别提高了8.8%、9.29%,主要吸附机理为酸性条件促进了铁氧化物表面羟基及PO34的质子化作用,强化了两者的结合。

    4)铁氧化物-活性炭处理尿液可有效实现有机物和P的去除,且尿液酸化处理可进一步提升P去除效果并防止结垢,是一种有效的预处理技术,为尿液的处理和回用提供了一种新的思路。

参考文献 (36)

返回顶部

目录

/

返回文章
返回