-
目前,国内外普遍在水源水体中检测到了不同种类的微量污染物[1-2]。这些微量污染物经过传统水处理工艺包括混凝、沉淀、过滤很难有效去除[3-4]。因此,高级氧化工艺如催化臭氧、紫外过氧化氢、紫外氯联合、芬顿等对微量污染物的强化去除方面的研究成为热点[5-8]。
多相芬顿技术作为高级氧化技术的一种,与活性炭工艺联用不仅可以去除水中天然有机物,还可以去除水中的有机农药、抗生素、内分泌干扰物等难降解的微量污染物,降低由微量污染物导致的水体毒性[9-12]。与其他深度处理技术相比,其不需要增加光、声、电等辅助设施,通常对温度和压力无要求,故具有非常广阔的应用前景[13]。
双酚A作为一种微量污染物,会影响人的内分泌系统,目前,对其降解的相关研究较多,除了化学法之外,也有采用微生物方法对其进行降解的研究[14-15]。在本研究中,首先以工业化合成的多相芬顿催化剂建立了多相芬顿催化柱,在北京某水厂进行了多相芬顿催化对天然有机物(NOM)的降解去除研究。在经过200 d运行后,通过对催化柱不同位置的催化剂进行取样,利用小试实验考察了生物膜对不同浓度双酚A去除效果的影响,最后为了分析生物膜的作用,对催化剂表面生物膜群落结构等进行了表征。本研究结果表明多相芬顿技术是一种很有应用前景的去除微量污染物的实用技术。
多相芬顿催化剂表面生物膜对去除双酚A的影响及其微生物群落表征
Effects of the surface biofilms of heterogeneous Fenton catalyst on the bisphenol A removal and the characterization of its bacterial community
-
摘要: 为了分析经长期运行的多相芬顿催化柱上生物膜的群落结构特征及其对双酚A去除的影响,利用中试实验对多相芬顿催化降解天然有机物(NOM)进行了为期200 d的跟踪检测,并利用小试实验对比研究了在有无生物膜以及催化柱不同位置上的生物膜对多相芬顿反应去除双酚A的影响效果。同时采集了多相芬顿催化柱不同位置的催化剂样品,对样品表面的生物膜群落结构、微生物量、代谢活性以及胞外多聚物(EPS)进行了系统的表征。结果表明:多相芬顿对NOM有很好的去除效果,而且生物膜的形成使得对双酚A的去除率可提高到36%~39%;此外,催化柱生物膜上微生物群落存在相似性,其中层和下层相似度更高;上层生物膜中微生物以赫山单胞菌属(Herminiimonas)和慢生根瘤菌属(Bardyrhizobium)为主,而中层和下层生物膜中微生物以Reyranella菌属和生丝微菌属(Hyphomicrobium)为主;随着微生物群落的变化,中试催化柱由上层到下层生物量有所增加,微生物代谢活性增强,可分泌更多的EPS,这可能是生物膜特别是下层生物膜提高对双酚A去除效果的主要原因。以上研究结果证实,多相芬顿技术是一种很有应用前景的去除微量污染物的实用技术。Abstract: In order to investigate the biofilms communities on the surface of heterogeneous Fenton catalyst after long-time running and their effects on the removal of bisphenol A, the heterogeneous Fenton was studied in a pilot scale to test its effect on the removal of natural organic matter (NOM) for 200 d. The effects of biofilms and the biofilms at different places of catalyst column on the removal of bisphenol A were also studied using a bench scale test. Meanwhile, different catalyst samples at the different places of the catalyst column were collected, and the biofilms bacterial community structure, bacterial biomass, bacterial metabolism, and the composition of extracellular polymeric substances (EPS) on the sample surface were analyzed. The results showed that heterogeneous Fenton had a good performance on the removal of NOM, and the formed biofilms improved the removal rate of bisphenol A to 36%~39%. Moreover, the results also indicated that the biofilms showed great similarity, especially for the biofilms in the middle and lower layers. The bacterial genera in upper layers were dominated by Herminiimonas and Bardyrhizobium, while in middle and lower layers, the bacterial genera were dominated by Reyranella Hyphomicrobium. Along with the changes of bacterial community, the biomass increased in the biofilms of catalyst from top to bottom. The function of bacterial metabolism also increased, and the bacteria could produce more EPS. This may be the main reason for the more removal of bisphenol A by biofilms adsorption, especially for the biofilms in the lower layers. The results indicated that the heterogeneous Fenton was a practical technique with promising applications for removing micropollutants.
-
-
[1] JOHNSON A C, KELLER V, DUMONT E, et al. Assessing the concentration and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in european rivers[J]. Science of the Total Environment, 2015, 511: 747-755. doi: 10.1016/j.scitotenv.2014.12.055 [2] WANG H, HU C, LIU L, et al. Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems[J]. Journal of Hazardous Materials, 2017, 339: 174-181. doi: 10.1016/j.jhazmat.2017.06.033 [3] YE Z, WEINBERG H S, MEYER M T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Chemosphere, 2007, 79(3): 1135-1144. [4] JIA S, SHI P, HU Q, et al. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination[J]. Environmental Science & Technology, 2015, 49(20): 12271-12279. [5] GUO Y, WANG H, WANG B, et al. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model[J]. Water Research, 2018, 142: 383-395. doi: 10.1016/j.watres.2018.06.019 [6] IKE I A, LEE Y, HUR J. Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination: A critical review[J]. Chemical Engineering Journal, 2019, 375: 121929. doi: 10.1016/j.cej.2019.121929 [7] FAN C, HORNG C Y, LI S J. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process[J]. Chemosphere, 2013, 93: 178-183. doi: 10.1016/j.chemosphere.2013.05.027 [8] WANG W, ZHANG X, WU Q, et al. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity[J]. Water Research, 2017, 124: 251-258. doi: 10.1016/j.watres.2017.07.029 [9] ZHAO L, CHEN Y, LIU Y, et al. Enhanced degradation of chloramphenicol at alkaline conditions by S(II) assisted heterogeneous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188: 557-566. doi: 10.1016/j.chemosphere.2017.09.019 [10] ZHANG Y, CHEN Z, ZHOU L, et al. Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite: Synergistic effect, principle and way of degradation[J]. Environmental Pollution, 2019, 244: 93-101. doi: 10.1016/j.envpol.2018.10.028 [11] HOU X J, HUANG X P, JIA F, et al. Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants[J]. Environmental Science & Technology, 2017, 51(9): 5118-5126. [12] XIE Z R, WANG C X, YIN L W. Nickel-assisted iron oxide catalysts for the enhanced degradation of refractory DDT in heterogeneous Fenton-like system[J]. Journal of Catalysis, 2017, 353: 11-18. doi: 10.1016/j.jcat.2017.03.024 [13] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 [14] YAO J Y, QU R J, WANG X H, et al. Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A[J]. Water Research, 2020, 169: 115273. doi: 10.1016/j.watres.2019.115273 [15] TAGHIZADEH T, TA0LEBIAN-KIAKALAIEH A, JAHANDAR H, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020, 386: 121950. doi: 10.1016/j.jhazmat.2019.121950 [16] LYU L, ZHANG L L, WANG Q Y, et al. Enhanced fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49: 8639-8647. [17] 刘小琳, 刘文君, 金丽燕, 等. 北京市给水管网管壁微生物膜群落[J]. 自然科学版, 2008, 48(9): 78-81. [18] 鲁智礼, 张堯, 黄俊亮, 等. 多相芬顿-活性炭工艺强化饮用水消毒效果[J]. 环境工程学报, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123 [19] MA X, VIKRAM A, CASSON L, et al. Centralized drinking water treatment operations shape bacterial and fungal community structure[J]. Environmental Science & Technology, 2017, 51(13): 7648-7657. [20] WANG H B, HU X X, HU C. Effects of chlorine and pipe material on biofilm development and structure in a reclaimed water distribution system[J]. Water Science and Technology: Water Supply, 2012, 12(3): 362-371. doi: 10.2166/ws.2012.005 [21] XING X C, WANG H B, HU C, et al. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems[J]. Water Research, 2018, 139: 168-176. doi: 10.1016/j.watres.2018.03.073