-
铬作为主要的工业原料被广泛应用于金属冶炼、材料加工、电镀、化工及制革等行业中[1-3]。如果大量未经处理的含铬废水排入环境,会对环境造成严重危害[4]。美国环保署早已将Cr(Ⅵ)纳入优先控制污染物清单,中国《生活饮用水卫生标准》中规定Cr(Ⅵ)浓度<0.05 mg·L−1。受天然溶出、铬渣堆放、含铬废水排放等不同污染源的影响,环境中铬污染浓度往往存在很大差异[5-11]。以铬渣堆放点为例,由于周边扩散条件和水流方向等地质条件的差异,最大Cr(Ⅵ)污染浓度超出了生活饮用水卫生标准的2 000倍[8, 12]。
将毒性强、迁移性好的Cr(Ⅵ)还原为毒性低的Cr(III)沉淀是目前广泛采用的Cr(Ⅵ)污染治理方法[13-14]。Cr(Ⅵ)主要还原途径包括生物还原和非生物还原,生物还原通过环境中耐铬微生物对Cr(Ⅵ)进行还原。由于Cr(Ⅵ)本身对微生物有一定毒性作用[15-16],还原Cr(Ⅵ)的微生物较少,且还原速率慢,使得生物还原Cr(Ⅵ)存在很多限制。非生物还原主要利用环境中的还原性物质,如Fe(Ⅱ)、有机质等,其特点是还原速率快,但消耗以后很难再生。在自然界中,含铁黏土矿物中的结构态铁含量可占到土壤和沉积物中铁含量的50%[17],广泛分布的异化铁还原菌可还原含铁黏土矿物中的铁,实现Fe(Ⅲ)-Fe(Ⅱ)的循环,该循环对环境中污染物代谢有着重要的作用[18]。此外,环境中广泛存在的天然有机质对不同生物还原过程中电子传递过程也有着重要的影响[17, 19-20]。
前期研究中,已发现电子传递体与含铁黏土矿物的添加对微生物还原0.8 mmol·L−1 Cr(Ⅵ)产生了明显的协同促进作用,这是由于电子传递体加速了微生物与含铁黏土矿物之间的电子传递,使黏土矿物中的Fe(Ⅲ)还原成结构态Fe(Ⅱ),并促进Cr(Ⅵ)的非生物还原[21-22],本研究则重点考察不同浓度的Cr(Ⅵ)条件下,电子传递体与含铁黏土矿物存在时对水体中Cr(Ⅵ)生物还原过程的协同促进作用。选取含铁量较高的黏土矿物绿脱石(NAu-2)和模式希瓦氏菌(Shewanella oneidensis MR-1)为代表,并选取蒽醌-2,6-二磺酸(AQDS)作为电子传递体,重点分析复杂环境体系中不同浓度条件下Cr(Ⅵ)迁移转化过程及机理,为地下水中不同污染程度的Cr(Ⅵ)环境污染治理修复提供参考。
含铁黏土矿物与电子传递体强化生物还原固定地下水中Cr(Ⅵ)的过程和机理分析
Enhancing process and mechanism of Cr(Ⅵ) bioreduction and fixation in groundwater by Fe(Ⅲ)-bearing clay mineral and electron shuttle
-
摘要: 为了提高微生物还原固定Cr(Ⅵ)的速率,实现地下水Cr(Ⅵ)污染物的快速有效去除,采用添加黏土矿物与电子传递体的方法,考察了含铁黏土矿物NAu-2和电子传递体AQDS单独/共存条件下对希瓦氏菌Shewanella oneidensis MR-1还原固定地下水中不同浓度Cr(Ⅵ)(0.1~2.0 mmol·L−1)的影响。结果表明:单独添加NAu-2对不同浓度Cr(Ⅵ)生物还原过程均无促进作用;单独添加AQDS对不同浓度Cr(Ⅵ)(0.2~2.0 mmol·L−1)生物还原过程均产生强化作用,强化系数达到1.33~3.90;同时添加NAu-2和AQDS时,不同浓度Cr(Ⅵ)(0.2~2.0 mmol·L−1)生物还原时的强化作用均得到明显提升,强化系数达到2.02~10.49。此外,对比NAu-2和AQDS共存时对MR-1还原不同浓度Cr(Ⅵ)的协同促进作用,发现在低浓度Cr(Ⅵ)(0.1~0.5 mmol·L−1)体系中未产生协同作用(协同系数<1.0),中、高浓度Cr(Ⅵ)(0.8~2.0 mmol·L−1)体系中产生了明显的协同作用(SF>1.0),且在Cr(Ⅵ)浓度为1.2 mmol·L−1时,协同效果最为明显(协同系数为2.98),说明NAu-2和AQDS对中、高浓度Cr(Ⅵ)(0.8~2.0 mmol·L−1)还原过程的协同促进作用差异较大。通过对不同Cr(Ⅵ)浓度条件下NAu-2、AQDS与MR-1共存的复杂体系中Cr(Ⅵ)迁移转化过程和机理进行研究,可为实际Cr(Ⅵ)污染场地修复提供新的修复思路及参考数据。
-
关键词:
- Cr(Ⅵ) /
- 生物还原 /
- Shewanella oneidensis MR-1 /
- 绿脱石(NAu-2) /
- 蒽醌-2,6-二磺酸(AQDS)
Abstract: In order to improve the efficiency of Cr(Ⅵ) bioreduction and fixation and to achieve rapid and effective removal of Cr(Ⅵ) pollutants in groundwater, the method of adding clay minerals and electron shuttle was adopted. The effects of iron-bearing clay mineral NAu-2 alone, electron shuttle AQDS alone and their both on the bioreduction and fixation of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L−1 in groundwater by metal-reducing bacteria Shewanella oneidensis MR-1 were explored. The results showed that NAu-2 alone addition have no effect on the promotion of Cr(Ⅵ) bioreduction, while AQDS alone addition could promote the bioreduction of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L−1, and the enhancement factor reached 1.33~3.90. With simultaneous addition of NAu-2 and AQDS, the enhancement of bioreduction was significantly elevated for Cr(Ⅵ) with different concentrations, and the enhancement factor reached 2.02~10.49. In addition, compared with the synergistic effects for bioreduction of Cr(Ⅵ) with different concentrations by MR-1 under the coexistence of AQDS and NAu-2, synergistic effect didn’t occur at low Cr(Ⅵ) contents of 0.1~0.5 mmol·L−1 with the synergistic factor lower than 1.0; while a significant synergistic effect occurred at medium and high Cr(Ⅵ) contenta of 0.8~2.0 mmol·L−1 with the synergistic factor higher than 1.0, and at the concentration of 1.2 mmol·L−1, the most significant synergistic effect occurred with the synergistic factor=2.98. This indicated that there were big differences in synergistic effect for the bioreduction of Cr(Ⅵ) among the medium and high concentrations. This study provides new remediation thought and reference data for the Cr(Ⅵ) contaminated sites through investigating the process and mechanism of Cr(Ⅵ) migration and transformation in the NAu-2, AQDS and MR-1 coexisting complex system under different concentrations of Cr(Ⅵ). -
表 1 不同Cr(Ⅵ)浓度下主要反应中MR-1、NAu-2、AQDS和乳酸钠的组合
Table 1. Combination of MR-1, NAu-2, AQDS and sodium lactate in the main reactions at different Cr(Ⅵ) concentrations
反应组合 MR-1 Cr(Ⅵ) NAu-2 AQDS 乳酸钠 MR-1+Cr(Ⅵ) + + − − + MR-1+Cr(Ⅵ)+NAu-2 + + + − + MR-1+Cr(Ⅵ)+AQDS + + − + + MR-1+Cr(Ⅵ)+
NAu-2+AQDS+ + + + + Cr(Ⅵ) − + − − + MR-1+NAu-2 + − + − + MR-1+NAu-2+AQDS + − + + + NAu-2 − − + − + 注:+代表体系中添加该物质;−代表体系中不添加该物质。 表 2 AQDS与NAu-2存在下微生物还原不同初始浓度Cr(Ⅵ)的一级动力学常数
Table 2. First-order kinetic constants of the bioreduction of Cr(Ⅵ) with different initial concentrations in the presence of AQDS and NAu-2
Cr(Ⅵ)/(mmol·L−1) MR-1+Cr(Ⅵ) MR-1+Cr(Ⅵ)+AQDS MR-1+Cr(Ⅵ)+NAu-2 MR-1+Cr(Ⅵ)+NAu-2+AQDS kcells R2 kcells+AQDS R2 kcells+NAu-2 R2 kcells+AQDS+NAu-2 R2 0.1 37.578±0.377 1.00 — — 34.121±3.080 1.00 — — 0.2 9.926±0.216 0.98 25.787±0.071 1.00 8.622±0.976 0.99 20.018±0.437 1.00 0.5 0.213±0.007 0.94 0.832±0.000 1.00 0.138±0.006 0.83 0.953±0.000 1.00 0.8 0.096±0.005 0.92 0.225±0.005 0.99 0.068±0.002 0.79 0.580±0.010 1.00 1.2 0.052±0.004 0.83 0.131±0.001 0.97 0.054±0.001 0.92 0.549±0.002 0.97 2.0 0.045±0.003 0.92 0.060±0.001 0.90 0.035±0.000 0.89 0.143±0.001 0.95 注:—代表反应过程太快,无法进行浓度测定和一级动力学常数计算。 表 3 不同浓度Cr(Ⅵ)生物还原体系中强化系数与协同系数
Table 3. Enhancement factor and synergistic factor in bioreduction system at different concentrations of Cr(Ⅵ)
Cr(Ⅵ)浓度/
(mmol·L−1)强化系数 协同系数 AQDS NAu-2 AQDS+NAu-2 0.1 — 0.91 — — 0.2 2.60 0.87 2.02 0.58 0.5 3.90 0.65 4.47 0.98 0.8 2.35 0.71 6.04 1.97 1.2 2.50 1.03 10.49 2.98 2.0 1.33 0.76 3.14 1.50 注:—代表反应过程太快,无法进行浓度测定和数值计算。 -
[1] NARAYANI M, SHETTY K V. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(9): 955-1009. doi: 10.1080/10643389.2011.627022 [2] LAXMAN R S, MORE S. Reduction of hexavalent chromium by streptomyces griseus[J]. Minerals Engineering, 2002, 15(11): 831-837. doi: 10.1016/S0892-6875(02)00128-0 [3] SELVARAJ K, MANONMANI S, PATTABHI S. Removal of hexavalent chromium using distillery sludge[J]. Bioresource Technology, 2003, 89(2): 207-211. doi: 10.1016/S0960-8524(03)00062-2 [4] SHAKOORI A R, MAKHDOOM M, HAQ R U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries[J]. Applied Microbiology and Biotechnology, 2000, 53(3): 348-351. doi: 10.1007/s002530050033 [5] GONZALEZ A R, NDUNG'U K, FLEGAL A R. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California[J]. Environmental Science & Technology, 2005, 39(15): 5505-5511. [6] IZBICKI J A, BULLEN T D, MARTIN P, et al. Delta chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA[J]. Applied Geochemistry, 2012, 27(4): 841-853. doi: 10.1016/j.apgeochem.2011.12.019 [7] PANAGIOTAKIS I, DERMATAS D, VATSERIS C, et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece[J]. Journal of Hazardous Materials, 2015, 281: 27-34. doi: 10.1016/j.jhazmat.2014.09.048 [8] MUKHOPADHYAY B, SUNDQUIST J, SCHMITZ R J. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II)[J]. Journal of Environmental Management, 2007, 82(1): 66-76. [9] DEY S, PAUL A K. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden[J]. Brazilian Journal of Microbiology, 2013, 44(1): 307-315. doi: 10.1590/S1517-83822013000100045 [10] FARMER J G, THOMAS R P, GRAHAM M C, et al. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites[J]. Journal of Environmental Monitoring, 2002, 4(2): 235-243. doi: 10.1039/b108681m [11] KAZAKIS N, KANTIRANIS N, KALAITZIDOU K, et al. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece[J]. Science of the Total Environment, 2017, 593-594: 552-566. doi: 10.1016/j.scitotenv.2017.03.128 [12] GAO Y, XIA J. Chromium contamination accident in China: viewing environment policy of China[J]. Environmental Science & Technology, 2011, 45(20): 8605-8606. [13] WANG Y T, XIAO C S. Factors affecting hexavalent chromium reduction in pure cultures of bacteria[J]. Water Research, 1995, 29(11): 2467-2474. doi: 10.1016/0043-1354(95)00093-Z [14] CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1): 146-152. [15] AHEMAD M. Bacterial mechanisms for Cr(VI) resistance and reduction: An overview and recent advances[J]. Folia Microbiologica, 2014, 59(4): 321-332. doi: 10.1007/s12223-014-0304-8 [16] MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2): 495-503. doi: 10.1007/s00792-015-0733-6 [17] LIU G, QIU S, LIU B, et al. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids[J]. Scientific Reports, 2017, 7: 1-9. doi: 10.1038/s41598-016-0028-x [18] LUAN F, LIU Y, GRIFFIN A M, et al. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3): 1418-1426. [19] LUAN F, BURGOS W D, XIE L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2010, 44(1): 184-190. [20] THACHER R, HSU L, RAVINDRAN V, et al. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter[J]. Chemical Engineering Science, 2015, 138: 552-565. doi: 10.1016/j.ces.2015.08.011 [21] BROOKSHAW D R, COKER V S, LLOYD J R, et al. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite[J]. Environmental Science & Technology, 2014, 48(19): 11337-11342. [22] MENG Y, ZHAO Z, BURGOS W D, et al. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1[J]. Science of the Total Environment, 2018, 640-641: 591-598. doi: 10.1016/j.scitotenv.2018.05.331 [23] BUTLER E C, CHEN L, HANSEL C M, et al. Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide[J]. Environmental Science: Processes & Impacts, 2015, 17(11): 1930-1940. [24] BISHOP M E, GLASSER P, DONG H, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203. doi: 10.1016/j.gca.2014.02.040 [25] LUAN F, BURGOS W D. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium[J]. Environmental Science & Technology, 2012, 46(21): 11995-12002. [26] MATOS J, LAINE J, HERRMANN J M. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania[J]. Journal of Catalysis, 2001, 200(1): 10-20. doi: 10.1006/jcat.2001.3191 [27] ZHOU T, LIM T T, WU X. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands[J]. Water Research, 2011, 45(9): 2915-2924. doi: 10.1016/j.watres.2011.03.008 [28] ZHOU T, WU X, ZHANG Y, et al. Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system[J]. Applied Catalysis B: Environmental, 2013, 136-137: 294-301. doi: 10.1016/j.apcatb.2013.02.004 [29] KAUWE J S, BERTELSEN S, MAYO K, et al. Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer’s disease[J]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153(4): 955-959. [30] JAISI D P, DONG H, LIU C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1145-1158. doi: 10.1016/j.gca.2006.11.027