[1] NARAYANI M, SHETTY K V. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(9): 955-1009. doi: 10.1080/10643389.2011.627022
[2] LAXMAN R S, MORE S. Reduction of hexavalent chromium by streptomyces griseus[J]. Minerals Engineering, 2002, 15(11): 831-837. doi: 10.1016/S0892-6875(02)00128-0
[3] SELVARAJ K, MANONMANI S, PATTABHI S. Removal of hexavalent chromium using distillery sludge[J]. Bioresource Technology, 2003, 89(2): 207-211. doi: 10.1016/S0960-8524(03)00062-2
[4] SHAKOORI A R, MAKHDOOM M, HAQ R U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries[J]. Applied Microbiology and Biotechnology, 2000, 53(3): 348-351. doi: 10.1007/s002530050033
[5] GONZALEZ A R, NDUNG'U K, FLEGAL A R. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California[J]. Environmental Science & Technology, 2005, 39(15): 5505-5511.
[6] IZBICKI J A, BULLEN T D, MARTIN P, et al. Delta chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA[J]. Applied Geochemistry, 2012, 27(4): 841-853. doi: 10.1016/j.apgeochem.2011.12.019
[7] PANAGIOTAKIS I, DERMATAS D, VATSERIS C, et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece[J]. Journal of Hazardous Materials, 2015, 281: 27-34. doi: 10.1016/j.jhazmat.2014.09.048
[8] MUKHOPADHYAY B, SUNDQUIST J, SCHMITZ R J. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II)[J]. Journal of Environmental Management, 2007, 82(1): 66-76.
[9] DEY S, PAUL A K. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden[J]. Brazilian Journal of Microbiology, 2013, 44(1): 307-315. doi: 10.1590/S1517-83822013000100045
[10] FARMER J G, THOMAS R P, GRAHAM M C, et al. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites[J]. Journal of Environmental Monitoring, 2002, 4(2): 235-243. doi: 10.1039/b108681m
[11] KAZAKIS N, KANTIRANIS N, KALAITZIDOU K, et al. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece[J]. Science of the Total Environment, 2017, 593-594: 552-566. doi: 10.1016/j.scitotenv.2017.03.128
[12] GAO Y, XIA J. Chromium contamination accident in China: viewing environment policy of China[J]. Environmental Science & Technology, 2011, 45(20): 8605-8606.
[13] WANG Y T, XIAO C S. Factors affecting hexavalent chromium reduction in pure cultures of bacteria[J]. Water Research, 1995, 29(11): 2467-2474. doi: 10.1016/0043-1354(95)00093-Z
[14] CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1): 146-152.
[15] AHEMAD M. Bacterial mechanisms for Cr(VI) resistance and reduction: An overview and recent advances[J]. Folia Microbiologica, 2014, 59(4): 321-332. doi: 10.1007/s12223-014-0304-8
[16] MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2): 495-503. doi: 10.1007/s00792-015-0733-6
[17] LIU G, QIU S, LIU B, et al. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids[J]. Scientific Reports, 2017, 7: 1-9. doi: 10.1038/s41598-016-0028-x
[18] LUAN F, LIU Y, GRIFFIN A M, et al. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3): 1418-1426.
[19] LUAN F, BURGOS W D, XIE L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2010, 44(1): 184-190.
[20] THACHER R, HSU L, RAVINDRAN V, et al. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter[J]. Chemical Engineering Science, 2015, 138: 552-565. doi: 10.1016/j.ces.2015.08.011
[21] BROOKSHAW D R, COKER V S, LLOYD J R, et al. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite[J]. Environmental Science & Technology, 2014, 48(19): 11337-11342.
[22] MENG Y, ZHAO Z, BURGOS W D, et al. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1[J]. Science of the Total Environment, 2018, 640-641: 591-598. doi: 10.1016/j.scitotenv.2018.05.331
[23] BUTLER E C, CHEN L, HANSEL C M, et al. Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide[J]. Environmental Science: Processes & Impacts, 2015, 17(11): 1930-1940.
[24] BISHOP M E, GLASSER P, DONG H, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203. doi: 10.1016/j.gca.2014.02.040
[25] LUAN F, BURGOS W D. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium[J]. Environmental Science & Technology, 2012, 46(21): 11995-12002.
[26] MATOS J, LAINE J, HERRMANN J M. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania[J]. Journal of Catalysis, 2001, 200(1): 10-20. doi: 10.1006/jcat.2001.3191
[27] ZHOU T, LIM T T, WU X. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands[J]. Water Research, 2011, 45(9): 2915-2924. doi: 10.1016/j.watres.2011.03.008
[28] ZHOU T, WU X, ZHANG Y, et al. Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system[J]. Applied Catalysis B: Environmental, 2013, 136-137: 294-301. doi: 10.1016/j.apcatb.2013.02.004
[29] KAUWE J S, BERTELSEN S, MAYO K, et al. Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer’s disease[J]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153(4): 955-959.
[30] JAISI D P, DONG H, LIU C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1145-1158. doi: 10.1016/j.gca.2006.11.027