蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺

叶元, 杨文杰, 郑志永, 刘和, 刘宏波, 张衍, 张福鑫, 颜威, 李峰. 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺[J]. 环境工程学报, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
引用本文: 叶元, 杨文杰, 郑志永, 刘和, 刘宏波, 张衍, 张福鑫, 颜威, 李峰. 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺[J]. 环境工程学报, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
YE Yuan, YANG Wenjie, ZHENG Zhiyong, LIU He, LIU Hongbo, ZHANG Yan, ZHANG Fuxin, YAN Wei, LI Feng. Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
Citation: YE Yuan, YANG Wenjie, ZHENG Zhiyong, LIU He, LIU Hongbo, ZHANG Yan, ZHANG Fuxin, YAN Wei, LI Feng. Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152

蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺

    作者简介: 叶元(1995—),男,硕士研究生。研究方向:固体废物资源化利用。E-mail:392241354@qq.com
    通讯作者: 刘和(1974—),男,博士,教授。研究方向:固体废物资源化利用。E-mail:liuhe@jiangnan.edu.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07203)
  • 中图分类号: X705

Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration

    Corresponding author: LIU He, liuhe@jiangnan.edu.cn
  • 摘要: 为了解决高有机质含量的蓝藻泥深度脱水难、资源化出路不畅的问题,建立了蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺。通过对含水率和体积减容率的测定,考察了热压滤脱水的效果;通过对碘吸附值、比表面积和饱和磁化强度的测定以及SEM观察,对磁性生物炭进行了表征。结果表明:经过热压滤脱水后可得含水率为65.3%的蓝藻饼,体积减容率为71.3%,约有70%的铁元素保留于蓝藻饼中;磁性生物炭表面可观察到致密排列的微孔(φ=1.5 μm)和铁磁性物质,碘吸附值为391 mg·g−1、比表面积为165 m2·g−1、饱和磁化强度为32 emu·g−1。铁盐作为该工艺桥联物质,在热压滤深度脱水中起到热絮凝作用,在磁性生物炭制备中起到催化和赋磁作用。蓝藻泥热压滤深度脱水处理耦合制备磁性生物炭,有助于实现蓝藻泥的深度脱水和资源化利用。
  • 突发环境污染事件具有发生的时间突然性、污染范围不确定性、负面影响的多重性,涉及社会安定、经济发展、生态环境及人群健康等方面。特别是流域性的突发环境污染事件极易造成跨市、跨省,甚至跨国污染,可能导致影响饮用水源地,造成水厂进水超标,严重时甚至造成停止供水。地方政府及有关部门在应对突发环境事件时,往往缺乏相关理论与实践经验,应急监测能力不足,装备、设备也很难满足应急需求。即使是有经验的专家,也同样会遇到突发环境事件中的特征污染物没有现成的处理工艺,需在短时间内开发研究新的处理工艺,同时还需克服现场各种不利条件。在众多突发环境事件中,污染物的来源是未知的,因此,还需要快速锁定并切断污染源,这是发生突发环境事件应急处置中的另一难点。在时间紧迫的情况下,若应急处理失败,则将可能导致数百上千人的健康受到威胁。

    2015年11月23日,E省某尾矿库2#排水井井座上第1层井圈、水面下约6 m处、东北偏北方向的井架两立柱间8块拱板破损脱落(见图1),形成了面积约5.28 m2的缺口,造成排水井周边、缺口以上约25 362 m3尾矿经破损洞口—排水井—排水管—排水涵洞等排水系统(见图2)后,从涵洞口喷涌而出,进入紧邻的A河,污染物顺A河水流扩散迁移,进而污染B河、C江。A河至C江F省段没有饮用水取水点,C江G省设有饮用水取水点。因此,此事件对沿线部分群众生产生活用水造成了一定影响。尾矿砂进入水体后迅速扩散,11月26日20时,B河入F省境内2 km处的锑浓度为0.556 5 mg·L−1,超标110倍。当时预计污染物前锋于12月6日凌晨到达G省H市饮用水水源地。12月7日18时C江F省和G省交界处超标3.2倍,H市I水厂取水口上游2 km的断面超标2.3倍。整个流域污染物逐步向下游扩散,浓度整体上进一步下降。

    图 1  尾矿库2#排水井破损现场照片
    Figure 1.  Photo of the damage site of 2# drainage well in tailing pond
    图 2  尾矿库排水系统示意图
    Figure 2.  Highlight of the drainage system of the tailings reservoir

    锑(Sb)是一种有毒的、生物体非必需的化学元素,对人体及生物具有慢性毒性及致癌性,在水环境中主要以五价锑形式存在。国内外尚未出现锑急性或者慢性损伤的案例。

    我国《地表水环境质量标准》(GB 3838-2002)[1]表3“集中式生活饮用水地表水源地特定项目标准限值”中规定锑浓度限制值为0.005 mg·L−1,对其他功能水体锑浓度未作规定。《生活饮用水卫生标准》(GB 5749-2006)[2]将锑列为非常规指标,其限值为0.005 mg·L−1。在行业标准方面,《锡、锑、汞工业污染物排放标准》(GB 30770-2014)[3]规定现有企业水污染物排放限值为1.0 mg·L−1,新建企业水污染物排放限值为0.3 mg·L−1,特定区域排放限值为0.3 mg·L−1。世界卫生组织规定饮用水标准[4]中锑的浓度限值为0.02 mg·L−1

    表 3  E、F、G三省锑的迁移过程
    Table 3.  Migration process of antimony in E, F and G provinces
    省份流域断面里程/km污染前锋污染峰团开始持续达标时刻
    到达时刻距事发时间/h到达时刻距事发时间/h峰值质量浓度/(mg·L−1)超标倍数
    E省A河事发点023日21时20分023日21时50分0.52.8559处理后达标
    A河与B河交汇口2324日5时7.524日12时15.523992016年1月25日20时
    B河大桥14324日15时1825日0时27.51.182352016年1月1日0时
    大桥26824日23时2625日7时30分351.16231无监测数据
    大桥38025日10时3726日10时620.9179无监测数据
    出E省断面10725日19时4626日20时720.611212016年1月25日20时
    F省B河E省、F省交界处11726日2时5327日12时880.621232016年1月28日20时
    F1水库坝首13227日4时7929日12时1360.244 347.862016年1月28日20时
    C江B河汇入C江下游1 km处14811月28日12时11211月30日10时1580.23846.62016年1月4日10时
    F2水库库首21212月1日22时19412月3日8时2280.0417.212月24日18时
    出F省断面25212月4日6时25012月5日23时2910.028 54.712月26日12时
    C江F省、E省交界处26212月4日18时26712月12日18时4540.020 93.1812月26日0时
    I水厂上游2公里断面31812月7日2时31712月8日3时3430.02103.212月24日8时
      注:污染前锋是指第一次出现超标的情况;污染峰团是指污染物浓度最高的情况;E省数据为监测与模拟结果,F省、G省数据为应急监测结果。
     | Show Table
    DownLoad: CSV

    G省H市区最主要的集中式饮用水取水口位于C江F省和G省交界下游约60 km处。应急处置专家根据污染形势和水文条件判断,该取水口锑浓度可能超标,如不采取有效措施,将会影响H市区正常供水。鉴于受事件影响的B河汇入C江,故将应急处置工作目标确定为:地表水体中锑浓度达到集中式生活饮用水地表水源地特定项目标准限值的0.005 mg·L−1;其他重金属项目评价标准执行《地表水环境质量标准》(GB 3838-2002)[1]Ⅲ类标准(按照《甘肃省地表水功能区划2012—2030年》,西汉水属于Ⅲ类功能区)。

    事故发生后,11月27日晚,E、F、G三省政府及环保、水利等有关部门联合召开了现场工作会。会上确定本次突发环境事件整体处置思路为:E省要坚决切断污染源,并沿途设置拦截设施;F省要全力以赴做好污染物拦截和处置工作;G省H市水厂在专家指导下储备好应急物资,做好应急准备,全力保障H市饮用水安全。三省建立了联动与信息通报机制,及时向社会发布事件动态信息。

    在事件发生的第一时间,E省安监局组织专家按照“应急封堵—临时加固—永久加固”的工作思路,开展了排水井封堵工作。永久加固工程于2016年1月14日完工,避免了尾矿砂再次泄露。其次,为了避免喷涌到A河的尾矿砂被河水携带到下游,自12月13日开始启动了A河永久性改道工作,通过在原河道和新河道之间砌筑河堤的方式,将河道向远离涵洞方向改道80 m,于2016年4月18日竣工。最后,对涵洞口出水,建设加固和防渗的沉淀池,并在沉淀池中通过混凝沉淀技术处理涵洞出水。通过上述措施,在河床存在上游污染、锑污染物持续溶解析出的情况下,自12月20日开始,A河入B河河口处的锑污染物浓度被控制在超标4倍以下,达到了切断污染源头的目标。

    此次突发污染事件中,E省承担拦截污染物的主要责任,通过控制B河出E省的流量,可为H市水厂应急处置争取时间。从11月30日起实施的拦截措施包括:1)通过在A河、B河的干流、支流上建设拦水坝198座,共拦截污染水体385×104 m3;2)对B河B1水电站落闸以拦截污染物;3)对B河支流的B2水电站、B3水电站落闸蓄水,减小未污染河水下泄造成下游污染水体量增大。

    通过上述措施,自12月3日13时开始,B河出省流量控制为3~5 m3·s−1(较之前流量平均减少约80%),并持续29 h。根据流量变化推算,相关措施为下游应急处置工作争取了约134 h。由于构筑坝体数量较多并存在一定的安全隐患,自12月4日0时起,按照“先上游后下游,先干流后支流”和“险坝优先、总量控制、兼顾稀释”的原则,对B河流域拦截坝实施泄流放水。

    因尾矿砂泄漏量大,为确保C江I市水厂供水安全,在切断污染源并实施截污工程的基础上,采用投药沉淀法将污染河流中的锑沉降,削减受污染河道中的锑浓度。专家组对比了0~2 ℃下,直接投加硫化钠、聚合硫酸铁和“硫化钠+聚合硫酸铁”3种方法对锑的去除效果,发现采用“硫化钠+聚合硫酸铁”法去除效果最好(3种试验方法及处理效率见表1),更能适应低温环境。该法利用废水中重金属离子具有胶体的沉降稳定性和聚合不稳定性,聚合硫酸铁既可破坏胶体的稳定性,又可促进重金属离子与硫化钠生成硫化物沉淀,从而去除水中锑离子。该法在实施过程中产泥量少,淤泥不容易复溶,对锑去除率最高可达到97%,但应特别注意硫化钠的投加量。硫化钠在水中会形成溶解性H2S、HS、S2-以及存在于悬浮物中的可溶性硫化物等物质。若投加过量可能导致水体颜色发黑,产生刺激性臭味。而水中的硫化物容易水解,以H2S形式释放到空气中,被大量吸收后会产生恶心、呕吐,甚至呼吸困难等。因此,在投加前应做好小试试验,摸清最佳投加量,做到精准投加,将硫化钠对河道的影响降至最低。突发环境事件应急处置过程中使用硫化钠时应注意,其水溶液呈碱性,触及皮肤和毛发时会造成灼伤。硫化钠水溶液在空气中会被缓慢氧化成硫代硫酸钠、亚硫酸钠、硫酸钠和多硫化钠。因硫代硫酸钠的生成速度较快,故硫化钠氧化的主要产物是硫代硫酸钠。硫化钠在空气中潮解,并发生碳酸化而变质,不断释放出硫化氢气体,因此,在操作过程中应特别注意个人防护。

    表 1  3种试验方法及除锑效率
    Table 1.  Three experimental methods and antimony removal efficiency rates
    试验方法试验条件锑质量浓度/(μg·L−1)锑去除率/%
    pH投加方法初始值处理后的值
    投加硫化钠8~9加30倍锑质量含量的硫化钠,充分搅拌60 min1 000876.1612.38
    投加聚合硫酸铁8~9加50倍锑质量含量的三价铁盐混凝剂聚合硫酸铁,充分搅拌40 min1 000631.0836.89
    投加“硫化钠+聚合硫酸铁”8~9加30倍锑质量含量的硫化钠,充分搅拌60 min;加50倍锑质量含量的三价铁盐混凝剂聚合硫酸铁,充分搅拌40 min1 00049.0095.1
     | Show Table
    DownLoad: CSV

    E省投药降污工作的具体运行方式有2类:一类是用于处理高锑浓度水,主要包括事发点围堰区投药点;另一类是用于降低A河入B河锑浓度的投药点,主要包括A1、A2和A3投药点。F省投药点在B河上F1水库下游约3.9 km和9.9 km处分别设置了2个应急投药点。各投药点投药工艺、运行时间以及投药效果等详见表2。F省B河投药降污效果见图3

    表 2  本次事件主要应急原位除锑工程与技术方法汇总表
    Table 2.  Summary of engineering and technical methods for emergency site in situ antimony removal
    行政区地点时间锑超标倍数流量与水温处理工艺主要参数现场处理效率与效果备注
    E省A河汇入B河前约1 km2015年12月4—12日20~401.8 m3·s−1夜间水温<6 ℃弱酸性铁盐混凝沉淀法加盐酸或硫酸调节pH至6.0,投加聚合硫酸铁180 mg·L−1平均64.6%加温溶药。水温<2 ℃时效果差
    2015年12月12—20日5~201.4 m3·s−1夜间水温<0 ℃硫化钠+聚合硫酸铁硫化钠20 mg·L−1,聚合硫酸铁150 mg·L−1>85%加温溶药。适应低温,产泥量少,淤泥不易复溶
    A河汇入B河前约15 km2015年12月6日—2016年1月31日<51.0 m3·s−1,全天水温<0 ℃硫化钠+聚合硫酸铁硫化钠14 mg·L−1,聚合硫酸铁120 mg·L−1>95%,达标加温溶药,增加沉淀时间。适应低温环境,产泥量少,淤泥不易复溶
    A河汇入B河前约2 km2015年12月20日—2016年1月31日<51.0 m3·s−1,全天水温<0 ℃硫化钠+聚合硫酸铁硫化钠14 mg·L−1,聚合硫酸铁120 mg·L−1>95%,达标加温溶药,增加沉淀时间。适应低温环境,产泥量少,淤泥不易复溶
    尾矿库涵洞下方2016年1月10日之前200200 m3·d−1夜间水温<0 ℃氢氧化钠+聚合硫酸铁加氢氧化钠调节pH9.0~9.5,聚合硫酸铁750 mg·L−1>95%,超标倍数<33~4 d需清理1次污泥,仅可白天高温时运行,不适应低温,淤泥易复溶
    2016年1月10日之后200200 m3·d−1全天水温<0 ℃硫化钠+聚合硫酸铁硫化钠75 mg·L−1,聚合硫酸铁300 mg·L−1>95%,超标倍数<37 d清理1次污泥,可全天运行,适应低温和高浓度处置,淤泥不易复溶
    B河B1水电站2015年12月3—5日5~1515~20 m3·s−1弱酸性铁盐混凝沉淀法加盐酸调整pH到5.0,投加聚合硫酸铁100 mg·L−1,混凝沉淀后加液体烧碱回调pH到7.7沉淀池拦水坝按照流域整体水利调度于12月4日被拆除,未进行对比监测
    F省B河F1水库下游2015年11月30日—12月4日7~5115~20 m3·s−1弱酸性铁盐混凝沉淀法加盐酸调整pH到5.0,投加聚合硫酸铁100 mg·L−1,混凝沉淀后加液体烧碱回调pH到7.7平均50%
    G省(H市)I水厂从12月7日7时开始运行,至12月29日结束2.34平均0.42 m3·s−1弱酸性铁盐混凝沉淀法(1)配水井处投加盐酸,将原水调整为pH 5.0~5.3;(2)絮凝池前端投加聚合硫酸铁,在絮凝池出水端监测pH 5.3~5.8;(3)经过2级沉淀后,在出水端投加食品级碳酸钠(食用纯碱),确保滤池出水端pH 7.8左右。平均80%,达标出厂锑浓度持续<4 µg·L−1
     | Show Table
    DownLoad: CSV
    图 3  F省B河投药降污效果图
    Figure 3.  Pollution reduction effect map of chemical dosing in B River in F Province

    采用硫化钠法产生的沉淀物,有再次复溶的风险,且对底栖生物具有潜在危害。为此,自12月1日起,对A河、B河沉积物进行清淤。一是清理围堰内的污染底泥,并清运到弃渣场集中堆放;二是利用A河断流时机,集中清理处置污染底泥及岸滩沉积物;三是持续清理各投药点的沉积污染物。截至2016年1月31日,应急处置期间总清污量约13 700 t,其中河道及重点区域清运尾砂约2 600 t,清理河道砂石和淤泥混合物等约11 100 t。受污染河道底泥经脱水至含水率80%后,交由有资质的单位处置。根据《国家危险废物名录(2016版)》中新增“危险废物豁免管理清单”规定,由危险化学品、危险废物造成的突发环境事件及其处理过程中产生的废物,在转移和处置或利用过程中可不按危险废物进行管理。

    在F省,通过对F1水库和F2水库的水利调蓄,在拦截污染物、蓄水稀释降低锑浓度峰值等方面发挥了重要作用,亦为下游布设投药点、筑设拦截坝以及H市布设应急输水管道和I水厂工艺改造等争取了宝贵时间。G省H市城区下游5个县区的30个乡镇、266处集中供水工程均在C江沿线取水,涉及供水人口29.6×104人。为保障下游群众供水安全,自12月7日起,3次调度G1水电站增加下泄流量,以稀释污染水体。自12月24日8时起,C江H市I水厂取水点上游断面开始达标,调水稀释处置措施随即停止。

    E省及F省采取了以下供水保障措施:告知E省及F省沿线群众停止从A河、B河取水,停用A河、B河沿河附近的井水、泉水;对A河、B河流域的集中式饮用水源和居民自备井开展监测,对超标的自备井全部进行了封堵或拆除;针对饮用水不达标的区域,通过引入山泉水或者接城市管网的应急供水管线。

    G省主要从2个方面开展供水保障:一是启用备用水源;二是对开展水厂除锑工艺改造。除锑工艺采用酸性条件下硫酸聚铁沉降法,除锑工艺效果详见图4。I水厂除锑工艺从12月7日7时开始运行,至12月29日结束,共运行22 d,处理的原水锑浓度最高达0.016 7 mg·L−1(超标2.34倍),出厂浓度稳定在0.004 mg·L−1以下。

    图 4  水厂除锑工艺效果图
    Figure 4.  Effect map of antimony removal in I water plant

    污染物锑从E省尾矿库喷出后进入A河,然后汇入B河;进入F省并汇入C江后,进入G省H市。在E、F、G三省各断面污染物锑的迁移过程见表3

    根据E省环境应急监测数据及模拟计算结果,污染物锑在E省重点断面的迁移过程为:11月24日5时即距事发7.5 h后,污染团前峰到达A河与B河交汇口;11月25日19时即事发46 h后,污染团前峰到达出E省断面;11月26日2时即事发53 h后,污染团前峰到达E、F省交界处。E省境内污染团峰值出现在事发点处,峰值浓度为2.8 mg·L−1,超标倍数为559。2016年1月25日20时即事发63 d后,A河与B河交汇口断面、出E省断面持续稳定达标;1月28日20时即事发67 d后,E、F省交界处断面持续稳定达标。

    根据对F省环境应急监测数据的分析,污染物锑在F省重点断面的迁移过程为:11月27日4时即事发79 h后,污染团前峰到达F1水库坝首;11月28日12时即事发112 h后,污染团前峰到达B河汇入C江下游1 km处;12月1日22时即事发194 h后,污染团前峰到达F2水库库首;12月4日6时即事发250 h后,污染团前峰到达出F省断面。F省境内污染团峰值出现在E省入F省2 km监测断面处,峰值浓度为0.614 3 mg·L−1,超标倍数为121.9。

    12月26日12时即事发33 d后,出F省断面持续稳定达标;2016年1月4日10时即事发44 d后,B河汇入C江下游1 km处断面持续稳定达标;1月28日20时即事发67 d后,E省入F省2 km监测断面持续稳定达标。

    根据对G省环境应急监测数据的分析,污染物锑在G省重点断面的迁移过程为:12月4日18时即事发267 h后,污染团前峰到达F、G省交界处;12月7日2时即事发317h后,污染团前峰到达H市饮用水源地上游2 km。G省境内污染团峰值出现在F、G省交界处监测断面,峰值浓度为0.028 6 mg·L−1,超标倍数为4.72;H市饮用水源地上游2 km断面处,峰值浓度为0.020 9 mg·L−1,超标倍数为3.2。2015年12月24日8时即距事发31 d后,H市饮用水源地上游2 km断面持续稳定达标;12月26日0时即距事发33 d后,F、G省交界断面持续稳定达标。

    根据辖区内锑质量浓度达标情况,E、F、G三省分别解除应急状态:2015年12月31日,H市人民政府宣布解除应急状态,2016年1月29日,E省人民政府宣布解除应急状态,2016年2月1日,F省人民政府宣布解除应急状态。截至2016年2月1日,该事件应急处置工作全线解除。

    此次E省某尾矿库泄漏次生突发环境事件的污染物排放量大、水体污染物浓度高、污染物扩散跨三省、应急处置难度大。本次突发环境事件的处置过程中,采用了断污染源、筑坝拦截、投药降污、河底清淤、饮用水厂应急除锑等应急处置措施,延缓了污染团到H市I水厂的时间、有效降低了河道锑浓度,保障了受影响地区的供水,减小了突发事件的影响程度与范围。通过现场试验,研究确定了低温(0~2 ℃)条件下应对锑污染的河道应急除锑技术,实施了3省11个断面的投药处置。该环境应急技术的开发可为我国冬季河流或湖库水环境突发重金属污染事件提供参考。

  • 图 1  蓝藻泥热压滤深度脱水耦合制备磁性生物炭工艺流程

    Figure 1.  Process of magnetic biochar preparation by coupled thermal pressure filtration treated Cyanobacteria sludge

    图 2  蓝藻泥过滤性质

    Figure 2.  Properties of Cyanobacteria sludge filtration

    图 3  不同调理条件下的压滤后蓝藻饼

    Figure 3.  Cyanobacteria cake after pressure filtration under different conditioning conditions

    图 4  不同工艺条件下磁性生物炭的SEM

    Figure 4.  SEM images of magnetic biochar under different process conditions

    图 5  磁性生物炭的磁滞回线

    Figure 5.  Magnetic hysteresis loop of magnetic biochar

    表 1  蓝藻饼的基本性质

    Table 1.  Basic properties of Cyanobacteria cake

    调理压滤条件蓝藻饼含水率/%蓝藻饼厚度/mm体积减容率/%蓝藻饼(VS/TS)/%
    10% FeCl3,80 ºC 65.3 15 71.3 78.5
    10%聚合Fe2 (SO4) 3,80 ℃ 78.4 18 49.0 77.6
    10%FeCl340%CaO,常温1) 65 16 57.2 45.6
      注:1)目前在无锡当地处理企业的太湖蓝藻泥调理和压滤工艺。
    调理压滤条件蓝藻饼含水率/%蓝藻饼厚度/mm体积减容率/%蓝藻饼(VS/TS)/%
    10% FeCl3,80 ºC 65.3 15 71.3 78.5
    10%聚合Fe2 (SO4) 3,80 ℃ 78.4 18 49.0 77.6
    10%FeCl340%CaO,常温1) 65 16 57.2 45.6
      注:1)目前在无锡当地处理企业的太湖蓝藻泥调理和压滤工艺。
    下载: 导出CSV

    表 2  磁性生物炭的基本性质

    Table 2.  Properties of the magnetic biochar

    供试样品碘吸附值/(mg·g−1)比表面积/(m2·g−1)总孔容/(cm3·g−1)平均孔径/nm得率/%
    BC-300 266 56.8 0.03 122 56.4
    BC-800 340 105 0.11 78.4 40.2
    BC-800-W 391 165 0.35 32.2 38.7
    供试样品碘吸附值/(mg·g−1)比表面积/(m2·g−1)总孔容/(cm3·g−1)平均孔径/nm得率/%
    BC-300 266 56.8 0.03 122 56.4
    BC-800 340 105 0.11 78.4 40.2
    BC-800-W 391 165 0.35 32.2 38.7
    下载: 导出CSV

    表 3  蓝藻粉与3种生物炭的元素质量分数

    Table 3.  Elemental mass fractions of Cyanobacteria powder and three types of biochar %

    供试样品CHONPSFe
    蓝藻干颗粒 45.34 6.57 34.05 5.21 5.12 0.97 2.74
    BC-300 51.03 6.18 30.83 5.42 5.10 0.91 0.35
    BC-800 64.17 3.99 26.08 2.18 1.62 0.54 1.42
    BC-800-W 65.22 3.86 24.96 2.27 1.60 0.53 1.56
    供试样品CHONPSFe
    蓝藻干颗粒 45.34 6.57 34.05 5.21 5.12 0.97 2.74
    BC-300 51.03 6.18 30.83 5.42 5.10 0.91 0.35
    BC-800 64.17 3.99 26.08 2.18 1.62 0.54 1.42
    BC-800-W 65.22 3.86 24.96 2.27 1.60 0.53 1.56
    下载: 导出CSV
  • [1] 段雯娟. 《美丽太湖宣言》吹响多方合作治污号角[J]. 地球, 2016, 1(2): 16-17.
    [2] 胡明明, 孙阳, 匡民, 等. 蓝藻藻华规模化清除技术应用研究[J]. 环境科学导刊, 2011, 30(6): 64-66.
    [3] QUIBLIER C, WOOD S A, ECHENIQUE S I, et al. A review of current knowledge on toxic benthic freshwater-ecology, toxin production and risk management[J]. Water Research, 2013, 47(15): 5464-5479. doi: 10.1016/j.watres.2013.06.042
    [4] TANG C, LI Y P, ACHARYA K. Modeling the effects of external nutrient reductions on algal blooms in hyper-eutrophic lake Taihu, China[J]. Ecological Engineering, 2016, 94(13): 164-173.
    [5] LARRONDE L M, JIN X. Microalgal biomass dewatering using forward osmosis membrane: Influence of microalgae species and carbohydrates composition[J]. Algal Research, 2017, 23(5): 12-19.
    [6] LAPASIN R, PRICL S, BERTOCCHI C, et al. Rheology of culture broths and exopolysaccharide of cyanospira capsulata at different stages of growth[J]. Carbohydrate Polymers, 1992, 17(1): 1-10. doi: 10.1016/0144-8617(92)90017-K
    [7] 杜昕睿, 刘传旸, 刘跃岭, 等. 絮凝剂对藻类后续厌氧消化过程的影响[J]. 安徽农业科学, 2017, 45(9): 17-19. doi: 10.3969/j.issn.0517-6611.2017.09.005
    [8] LAMA S, MUYLAERT K, KARKI T, et al. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation[J]. Bioresource Technology, 2016, 220(17): 464-470.
    [9] STRAUSS K. Process for reducing the water content of lignite: AU1791197[P]. 1997-08-28.
    [10] OLIVEIRA L C A, PEREIRA E, GUIMARAES I R, et al. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents[J]. Journal of Hazardous Materials, 2009, 165(3): 87-94.
    [11] JUANG R S, YEI Y C, LIAO C S, et al. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 18(46): 51-60.
    [12] SON E B, POO K M, CHANG J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macroalgal biomass[J]. Science of the Total Environment, 2018, 615(17): 161-168.
    [13] ZHOU X H, ZHOU J J, LIU Y C, et al. Preparation of magnetic biochar derived from cyclosorus interruptus for the removal of phenolic compounds: Characterization and mechanism[J]. Separation Science & Technology, 2018, 53(9): 1-12.
    [14] ZHANG M, GAO B, VARNOOSFADERANI S, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J]. Bioresource Technology, 2013, 130(11): 457-462.
    [15] ZHANG Z S, WANG X J, WANG Y, et al. Pb(Ⅱ) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves[J]. Journal of Environmental Sciences, 2013, 25(5): 1044-1053. doi: 10.1016/S1001-0742(12)60144-2
    [16] 中华人民共和国住建部, 中国国家标准化管理委员会. 城市污水处理厂污泥检测方法: CJ/T 221-2005[S]. 北京: 中国环境科学出版社, 2005.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤质颗粒生物炭试验方法 碘吸附值的测定: GB/T 7702.7-2008[S]. 北京: 中国环境科学出版社, 2008.
    [18] 余甜甜. 高压均质和热滤脱水联合促进蓝藻减量化试验研究[D]. 无锡: 江南大学, 2019.
    [19] CHAPUIS P R, AUBERTIN M. On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616-628. doi: 10.1139/t03-013
    [20] 刘宇, 周辉, 于鹏, 等. 磁性炭基吸附剂的制备及其吸附与再生性能研究[J]. 工业水处理, 2015, 35(1): 48-51. doi: 10.11894/1005-829x.2015.35(1).048
    [21] 史宸菲, 李雨濛, 冯瑞杰, 等. 蓝藻生物炭的制备及对过硫酸盐的活化效能[J]. 生态与农村环境学报, 2017, 33(12): 1140-1145. doi: 10.11934/j.issn.1673-4831.2017.12.011
    [22] 金永龙, 徐南平. 固体碳直接还原反应的优化[J]. 烧结球团, 1996, 21(6): 31-35.
    [23] 李黎, 马力. Fe3O4磁性微粒的制备及表征[J]. 中国组织工程研究, 2011, 15(34): 6385-6387. doi: 10.3969/j.issn.1673-8225.2011.34.028
    [24] 程伟凤, 李慧, 杨艳琴, 等. 城市污泥厌氧发酵残渣热解制备生物炭及其氮磷吸附研究[J]. 化工学报, 2015, 67(4): 1541-1548.
    [25] MA X J, YANG H M, YU L L, et al. Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation[J]. Materials, 2014, 7(6): 4431-4441. doi: 10.3390/ma7064431
    [26] TRISTAN P, LJILIANA P. FTIR spectroscopy of nanodiamonds: Methods and interpretation[J]. Diamond & Related Materials, 2018, 89(22): 457-468.
    [27] 欧阳文璟, 王磊, 吴林汭, 等. 磁性碳纳米复合材料的制备及其吸附性能研究[J]. 化工管理, 2018, 27(33): 194-196. doi: 10.3969/j.issn.1008-4800.2018.33.133
    [28] YANG J P, ZHAO Y C, MA S M, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology, 2016, 50(10): 12040-12047.
    [29] 符剑刚, 贾阳, 李政, 等. 磁性生物炭负载Mg-Fe水滑石的制备及其吸附水中Cd(Ⅱ)和Ni(Ⅱ) 的性能[J]. 化工环保, 2019, 39(5): 574-580. doi: 10.3969/j.issn.1006-1878.2019.05.015
  • 加载中
图( 5) 表( 3)
计量
  • 文章访问数:  5010
  • HTML全文浏览数:  5010
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-26
  • 录用日期:  2020-03-24
  • 刊出日期:  2020-11-10
叶元, 杨文杰, 郑志永, 刘和, 刘宏波, 张衍, 张福鑫, 颜威, 李峰. 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺[J]. 环境工程学报, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
引用本文: 叶元, 杨文杰, 郑志永, 刘和, 刘宏波, 张衍, 张福鑫, 颜威, 李峰. 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺[J]. 环境工程学报, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
YE Yuan, YANG Wenjie, ZHENG Zhiyong, LIU He, LIU Hongbo, ZHANG Yan, ZHANG Fuxin, YAN Wei, LI Feng. Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152
Citation: YE Yuan, YANG Wenjie, ZHENG Zhiyong, LIU He, LIU Hongbo, ZHANG Yan, ZHANG Fuxin, YAN Wei, LI Feng. Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3162-3169. doi: 10.12030/j.cjee.201912152

蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺

    通讯作者: 刘和(1974—),男,博士,教授。研究方向:固体废物资源化利用。E-mail:liuhe@jiangnan.edu.cn
    作者简介: 叶元(1995—),男,硕士研究生。研究方向:固体废物资源化利用。E-mail:392241354@qq.com
  • 1. 江南大学环境与土木工程学院,江苏省厌氧生物技术重点实验室,无锡 214122
  • 2. 浙江清风源环保科技有限公司,湖州 313009
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07203)

摘要: 为了解决高有机质含量的蓝藻泥深度脱水难、资源化出路不畅的问题,建立了蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺。通过对含水率和体积减容率的测定,考察了热压滤脱水的效果;通过对碘吸附值、比表面积和饱和磁化强度的测定以及SEM观察,对磁性生物炭进行了表征。结果表明:经过热压滤脱水后可得含水率为65.3%的蓝藻饼,体积减容率为71.3%,约有70%的铁元素保留于蓝藻饼中;磁性生物炭表面可观察到致密排列的微孔(φ=1.5 μm)和铁磁性物质,碘吸附值为391 mg·g−1、比表面积为165 m2·g−1、饱和磁化强度为32 emu·g−1。铁盐作为该工艺桥联物质,在热压滤深度脱水中起到热絮凝作用,在磁性生物炭制备中起到催化和赋磁作用。蓝藻泥热压滤深度脱水处理耦合制备磁性生物炭,有助于实现蓝藻泥的深度脱水和资源化利用。

English Abstract

  • 随着太湖周边城市规模的不断扩大和经济的高速发展,污染日趋严重,蓝藻水华已经成为太湖区域最突出的环境问题之一。每年夏秋的蓝藻暴发时期,太湖蓝藻浆的每日打捞量可达上万吨[1]。打捞上岸后的蓝藻浆经破气囊、絮凝和初步脱水后得到蓝藻泥,其含水率仍高达85%~95%[2],这给运输、储存和进一步处理带来很大的困难。由于蓝藻泥易腐、恶臭且含有藻毒素[3],加上其生长量和品质受季节因素影响较大[4],目前仍未找到适宜的资源化途径。主要原因在于:1)蓝藻泥中有机质含量高,细胞外存在不溶于水的荚膜多糖[5],将蓝藻细胞周围吸附水、间隙水都包裹在一起[6],导致脱水和干化成本很高;2)当前比较经济的蓝藻脱水技术需添加大量的氧化钙、聚合氯化铝[7]和稀释水,导致滤饼中无机组分含量高达总干质量的40%~60%,使后续资源化处理途径受到限制。目前,打捞上岸后的蓝藻泥末端出路受阻,当地政府联合热电企业,推进干化-焚烧工艺,但处理费用高,同时亦影响到太湖蓝藻的打捞规模和治理效果。因此,蓝藻泥的深度脱水和资源化处理方法已成为非常迫切的技术需求。

    高有机物原料是制备优质生物炭的前提条件,但脱水过程中加入大量无机助滤剂将使蓝藻泥的高有机质优势丧失殆尽。为解决滤饼中无机组分含量较高的问题,需要从pH、温度、絮凝剂种类[8]等方面改变压滤条件。其中,热压滤技术由于不引入无机物、显著降低料液黏度和过滤比阻,是较为经济、简洁的方式之一[9]。以氯化铁为高效助滤剂,在脱水过程中迁移进蓝藻饼,在后续的热解碳化过程中,发挥FeCl3的催化效果[10]和赋磁性能,生成磁性生物炭[11]。近年来,磁性生物炭的制备和在环境领域的应用得到了快速发展,在重金属和有机污染物吸附领域中得到了广泛应用[12]。磁性生物炭的制备方法主要有浸渍法、液相沉淀法和液相还原法[13]。一般是将制备完成的生物炭与铁盐混合,再调节pH,使铁盐转化为磁性的铁氧化物[14]。JUANG等[11]将活性炭与Fe3O4纳米颗粒通过化学键结合,制备出具有去除废水中有毒污染物能力的材料。ZHANG等[15]利用浸渍和微波加热的方法得到改性竹炭材料(Fe-MBC),并将其应用于水溶液中Pb2+的去除。

    本研究将热压滤深度脱水技术和磁性生物炭制备技术通过铁盐进行耦合,建立蓝藻泥资源化利用中试工艺;通过研究不同的压滤组合条件,提出最优参数组合,并成功地利用热压滤之后的含铁盐蓝藻饼,制备出品质优良的蓝藻磁性生物炭;探讨了铁盐的蓝藻泥热絮凝和生物炭催化赋磁作用,并对整个工艺进行经济性分析。该中试工艺可为蓝藻泥进行无害化、减量化和资源化处理提供参考。

  • 实验所使用的蓝藻泥取自无锡市某藻水分离站,其含水率为92.56%±1.27%、VS/TS为85.36%±2.78%、pH为6.42±0.37。

  • 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的工艺流程如图1所示。向蓝藻泥中加入干基10%的助滤剂,搅拌并用水蒸气加热至80 ℃,泵入增强聚丙烯压滤机。压滤机过滤面积为20 m2、滤室总容积为290 L、进料压力为0.8 MPa、进料时间为2 h、压榨压力为0.9 MPa。实验组1添加10%氯化铁,在80 ℃条件下压滤;实验组2添加10%聚合硫酸铁,在80 ℃条件下压滤;实验组3添加10%氯化铁和40% CaO,由于添加CaO后物料的流动性较差,需要添加2倍体积的水进行稀释后再进行压滤操作,常温下压滤。各组的其他压滤操作条件相同。

    将压滤后的蓝藻饼运输至圆盘干化机,以水蒸气为热源进行干化,得到蓝藻泥干颗粒。以天然气为燃料加热回转炉,设置升温速率为5 ℃·min−1,使炉温升高至300 ℃,同时向回转炉内通入氮气(120 L·min−1)。将蓝藻泥干颗粒运输至回转炉中,停留60 min,获得生物炭BC-300;再将生物炭BC-300在800 ℃下停留120 min,获得生物炭BC-800。另取生物炭BC-300在800 ℃下停留120 min,同时向炉内通入流量为100 kg·h−1的水蒸气,获得生物炭BC-800-W。

  • 增强聚丙烯压滤机(X16AGZFDR20/800-UK型,杭州兴源环保设备有限公司);圆盘干化机(wg-10型,浙江清风源环保科技有限公司);回转炉(ROJ-95-9型,无锡奥普瑞炉业公司);水分测定仪(HE53/02型,上海梅特勒-托利多国际贸易有限公司);马弗炉(KSY-12-16型,上海跃进医疗器械有限公司);高性能比表面积分析仪(JW-BK200型,北京精微高博科学技术有限公司);扫描电子显微镜(SU1510型,日立高新技术公司);振动样品磁强计(VersaLab型,深圳市蓝星宇电子科技有限公司)。

  • 采用水分测定仪测定含水率;采用国家标准方法测定VS/TS[16]和磁性生物炭碘吸附值[17];采用比表面积分析仪测定磁性生物炭比表面积;采用扫描电子显微镜(SEM)观察磁性生物炭表面结构;采用能谱仪(EDS)测定样品元素含量;采用振动样品磁强计测定磁性生物炭磁滞回线。

  • 通过研究絮凝剂、温度等基础工艺条件对蓝藻泥热压滤脱水性能的影响,最终得出最佳的热压滤条件:添加蓝藻泥干质量10%的FeCl3,热滤温度为80 ℃ [18]图2反映了中试条件下热压滤脱水时滤液体积随时间的变化关系以及蓝藻饼的比阻。

    图2(a)可知,在压滤最初的20 min内,3组实验的压滤速度相似。随着压滤的进行,实验组1(10% FeCl3,80 ºC)和实验组3(10%FeCl3+40%CaO,常温)的滤液体积逐渐大于实验组2(10%聚合Fe2(SO4)3,80 ℃)。结合图2(b)的比阻数据可知,压滤阶段实验组1、3的比阻分别为1.48×1013 m·kg−1、1.28×1013 m·kg−1,小于实验组2的比阻。因此,在压滤阶段呈现出更优越的压滤性能。随着进料泵的持续工作,滤腔中的料液不断被填充、压紧,过滤速度逐渐变慢。当压滤阶段完成后,仅靠进料泵的压力无法对不断压紧的滤料进一步压滤,此时关闭进料阀,向隔膜腔内通入压榨水,挤压腔内滤料,使滤饼得到进一步压实。在压榨阶段,3组实验仍旧呈现不同的压滤性能,实验组1比阻为2.25×1014 m·kg−1,实验组2比阻为2.81×1014 m·kg−1,实验组3比阻为2.21×1014 m·kg−1。最终,3组实验的滤液总体积分别为670、560和 700 L。

    图3为3组压滤脱水之后的蓝藻饼。实验组1滤腔内具有成形的蓝藻饼,平均厚度为15 mm,易与滤布分开和脱落;实验组2滤腔内的蓝藻饼基本成形,但与滤布的粘连情况较为明显,含水率较高;实验组3滤腔内也具有成形的蓝藻饼,但由于加入了大量的CaO,物料充满滤腔时的最大有效进料量受到限制(0.29 t),导致体积减容率较低。

    表1可知,实验组1采用的脱水方式效果较好,蓝藻饼含水率可以降低至65.3%。这是由于热压滤和FeCl3的絮凝效果共同起作用的结果。根据Kozeny-Carman方程[19]可知,压滤的比阻主要取决于体系中颗粒的大小、颗粒的形状(比表面积)、颗粒的可压缩性。当加热蓝藻泥时,铜绿微囊藻(蓝藻泥的主要微生物组成)细胞外的荚膜多糖被融化,导致藻细胞团离散而使颗粒变小,这是加热对压滤不利的一面;但有利的一面是,由于加热导致细胞壁的直接裸露而使颗粒的刚性增强(可压缩性变小),而且FeCl3使离散的细胞重新絮凝聚合,对颗粒进行了重新“组装”而使絮凝后的颗粒变大。在后者的作用下,调理后的蓝藻泥脱水性能得到改善。另外,由于本工艺引入了热压滤工艺,使得无机调理剂的添加量从蓝藻干质量的50%(蓝藻泥处理企业的当前工艺参数)下降至10%,体积减容率也从57.2%提高到71.3%,藻饼的有机质含量从45.6%提高到78.5%。

    对比中试实验的结果,选取FeCl3作为助滤剂进行热压滤脱水。在后续的蓝藻饼干化阶段,以水蒸气为热源,采用圆盘干化机将含水率为65.3%的蓝藻饼干化为含水率为30%的蓝藻泥干颗粒,以进行磁性生物炭的制备。而干化阶段蒸发1 t水需要大约1.3 t水蒸气。

    FeCl3是耦合蓝藻泥深度脱水和生物炭赋磁的桥联物质。在蓝藻脱水过程中,FeCl3的添加能够中和蓝藻颗粒所带的电荷,减小蓝藻颗粒与水分子的亲和力,使蓝藻颗粒得以絮凝,改善其脱水效率。在制备磁性生物炭过程中,铁元素的存在能够催化蓝藻干颗粒的热解碳化并且使生物炭赋磁[20]

    分析滤液和蓝藻饼中铁元素可知,经过热压滤脱水后的蓝藻饼中约有70%的铁元素得以保留,用于后续的生物炭制备。目前成熟的磁性生物炭制备工艺是在原有的生物炭基础上,利用三价铁离子在碱性条件下陈化形成磁性物质Fe3O4,从而使生物炭赋磁。在本研究中,将生物炭赋磁工艺与碳化热解工艺相结合,在不添加碱性物质的前提下制备磁性生物炭。

  • 蓝藻磁性生物炭制备的实验条件:碳化温度300 ℃、碳化时间60 min、活化温度800 ℃、活化时间120 min。由表2可知,经过300 ℃初步碳化后,生物炭BC-300具有一定的碘值和比表面积。当反应温度达到800 ℃时,生物炭BC-800的碘值达到340 mg·g−1,比表面积达到105 m2·g−1,并且总孔容和平均孔径也有相应的提高。由于生物炭BC-800-W采用水蒸气作为活化剂,相较于前2种生物炭具有更好的性能,其碘值相较于生物炭BC-300提高了接近47%,达到391 mg·g−1,比表面积提高了近2倍,达到165 m2·g−1。史宸菲等[21]利用磷酸浸泡蓝藻泥的方式,在500 ℃热解温度下制备蓝藻生物炭,其比表面积为109.55 m2·g−1,低于生物炭BC-800-W的比表面积。其原因是,生物炭BC-800-W制备时热解温度(800 ℃)更高,同时FeCl3和水蒸气在热解过程中发挥催化和活化作用。

    通过SEM表征3种生物炭的形貌和微观结构。图4(a)显示了生物炭BC-300的表观形态。可以看出少量直径约为3 μm的细孔,经过300 ℃碳化后,生物炭表面已经发生少量的还原反应[22]而产生细孔。图4(b)显示了生物炭BC-800拥有相对粗糙的表面。由于反应温度升高,使其发生进一步的还原反应,形成更加细小的孔,增大比表面积。图4(c)显示了生物炭BC-800-W在原有的细孔基础之上又重新蚀刻出新的孔,其表面已经形成整齐排布的致密孔层结构,孔状为圆形,直径约为1.5 μm。由图4(d)可知,生物炭BC-800-W表面已经有明显的晶体生成,推测这些晶体可能为一种铁磁性物质[23]。程伟凤等[24]利用脱水污泥和发酵污泥制备的生物炭,但其表面并未形成整齐排布的致密孔层结构,原因在于制备生物炭的原料有差异。脱水污泥和发酵污泥的VS/TS分别为66.35%和41.10%[24],远低于蓝藻的VS/TS(85.36%)(见1.1节)。正是由于蓝藻泥中有机组分含量较高,在热解过程中更有利于碳还原反应的发生,从而蚀刻出更多致密排列的细孔。

    通过EDS对干化之后的蓝藻干颗粒和3种生物炭进行元素分析。由表3可知,在碳化的过程中,碳元素的相对含量升高,氢元素的相对含量较低,证明在该过程中已经发生脱氢固碳的还原反应[21];随着反应温度的升高和水蒸气[25]的引入,脱氢固碳反应发生更加明显,碳元素的相对含量在整个过程中逐渐升高,氢元素的相对含量逐渐降低。同时,虽然氧元素和氮元素有一定程度的降低,但依然会存在于生物炭中,有利于在其表面形成含氧、氮的官能团[26];铁元素经过碳化、活化反应之后会有一定程度的损失,大部分铁元素仍旧以FeCl3的形式附着在生物炭表面,经过酸洗、水洗后被除去,但仍会有1.50%左右的铁元素存在。后续将会对制备出的生物炭进行磁滞回线分析,以探究生物炭是否具有磁性。

    采用磁滞回线检测并判断生物炭的饱和磁化强度。由图5可知,由于3种生物炭的磁滞回线皆表现为重合状态,说明3种生物炭皆表现为可忽略不计的矫顽力和磁化滞后[27]。具体表现为生物炭BC-300饱和磁化强度约为2 emu·g−1,生物炭BC-800饱和磁化强度约为30 emu·g−1,生物炭BC-800-W饱和磁化强度约为32 emu·g−1。由图4(d)看出,在生物炭BC-800-W表面可能已经形成铁磁性物质。而饱和磁化强度的差异,可能是由于铁元素的存在形式存在差异[28]而导致的。与利用油茶树果壳制备的磁性生物炭[29]相比,该研究制备的生物炭BC-800-W饱和磁化强度较高,高于其制备磁性生物炭的饱和磁化强度21.57 emu·g−1。原因在于,生物炭BC-800-W在制备过程中,活化温度更高且有水蒸气的参与,利用的是FeCl3作为赋磁原料。与利用油茶树果壳制备的磁性生物炭[29]相比,生物炭BC-800和BC-800-W所具有的磁化强度,可以使用永久性磁体将其从水溶液中分离出来。

  • 1)中试规模的蓝藻热压滤深度脱水耦合制备磁性生物炭工艺实验表明,以蓝藻泥干质量10% 的FeCl3作为助滤剂, 在80 ºC时进行热压滤;热压滤阶段会产生670 L的压滤水,压滤阶段蓝藻泥比阻约为1.48×1013 m·kg−1,压榨阶段蓝藻泥比阻约为2.25×1014 m·kg−1,形成蓝藻饼含水率约为65.3%,厚度约为15 mm,体积减容率达到71.3%,VS/TS约为78.5%。

    3)经过水蒸气活化后制备的磁性生物炭碘吸附值为391 mg·g−1,比表面积为165 m2·g−1,饱和磁化强度为32 emu·g−1,在其表面可能有铁磁性物质晶体生成。

    4) FeCl3作为耦合热压滤深度脱水工艺和制备磁性生物炭工艺的桥联物质,既在前段工艺起到热絮凝的作用,又在后段工艺起到催化反应和生物炭赋磁的作用。

参考文献 (29)

返回顶部

目录

/

返回文章
返回