-
随着太湖周边城市规模的不断扩大和经济的高速发展,污染日趋严重,蓝藻水华已经成为太湖区域最突出的环境问题之一。每年夏秋的蓝藻暴发时期,太湖蓝藻浆的每日打捞量可达上万吨[1]。打捞上岸后的蓝藻浆经破气囊、絮凝和初步脱水后得到蓝藻泥,其含水率仍高达85%~95%[2],这给运输、储存和进一步处理带来很大的困难。由于蓝藻泥易腐、恶臭且含有藻毒素[3],加上其生长量和品质受季节因素影响较大[4],目前仍未找到适宜的资源化途径。主要原因在于:1)蓝藻泥中有机质含量高,细胞外存在不溶于水的荚膜多糖[5],将蓝藻细胞周围吸附水、间隙水都包裹在一起[6],导致脱水和干化成本很高;2)当前比较经济的蓝藻脱水技术需添加大量的氧化钙、聚合氯化铝[7]和稀释水,导致滤饼中无机组分含量高达总干质量的40%~60%,使后续资源化处理途径受到限制。目前,打捞上岸后的蓝藻泥末端出路受阻,当地政府联合热电企业,推进干化-焚烧工艺,但处理费用高,同时亦影响到太湖蓝藻的打捞规模和治理效果。因此,蓝藻泥的深度脱水和资源化处理方法已成为非常迫切的技术需求。
高有机物原料是制备优质生物炭的前提条件,但脱水过程中加入大量无机助滤剂将使蓝藻泥的高有机质优势丧失殆尽。为解决滤饼中无机组分含量较高的问题,需要从pH、温度、絮凝剂种类[8]等方面改变压滤条件。其中,热压滤技术由于不引入无机物、显著降低料液黏度和过滤比阻,是较为经济、简洁的方式之一[9]。以氯化铁为高效助滤剂,在脱水过程中迁移进蓝藻饼,在后续的热解碳化过程中,发挥FeCl3的催化效果[10]和赋磁性能,生成磁性生物炭[11]。近年来,磁性生物炭的制备和在环境领域的应用得到了快速发展,在重金属和有机污染物吸附领域中得到了广泛应用[12]。磁性生物炭的制备方法主要有浸渍法、液相沉淀法和液相还原法[13]。一般是将制备完成的生物炭与铁盐混合,再调节pH,使铁盐转化为磁性的铁氧化物[14]。JUANG等[11]将活性炭与Fe3O4纳米颗粒通过化学键结合,制备出具有去除废水中有毒污染物能力的材料。ZHANG等[15]利用浸渍和微波加热的方法得到改性竹炭材料(Fe-MBC),并将其应用于水溶液中Pb2+的去除。
本研究将热压滤深度脱水技术和磁性生物炭制备技术通过铁盐进行耦合,建立蓝藻泥资源化利用中试工艺;通过研究不同的压滤组合条件,提出最优参数组合,并成功地利用热压滤之后的含铁盐蓝藻饼,制备出品质优良的蓝藻磁性生物炭;探讨了铁盐的蓝藻泥热絮凝和生物炭催化赋磁作用,并对整个工艺进行经济性分析。该中试工艺可为蓝藻泥进行无害化、减量化和资源化处理提供参考。
蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺
Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration
-
摘要: 为了解决高有机质含量的蓝藻泥深度脱水难、资源化出路不畅的问题,建立了蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺。通过对含水率和体积减容率的测定,考察了热压滤脱水的效果;通过对碘吸附值、比表面积和饱和磁化强度的测定以及SEM观察,对磁性生物炭进行了表征。结果表明:经过热压滤脱水后可得含水率为65.3%的蓝藻饼,体积减容率为71.3%,约有70%的铁元素保留于蓝藻饼中;磁性生物炭表面可观察到致密排列的微孔(φ=1.5 μm)和铁磁性物质,碘吸附值为391 mg·g−1、比表面积为165 m2·g−1、饱和磁化强度为32 emu·g−1。铁盐作为该工艺桥联物质,在热压滤深度脱水中起到热絮凝作用,在磁性生物炭制备中起到催化和赋磁作用。蓝藻泥热压滤深度脱水处理耦合制备磁性生物炭,有助于实现蓝藻泥的深度脱水和资源化利用。Abstract: In order to solve the difficult problems of deep dehydration and blocked access to resources of Cyanobacteria sludge with high organic content, a pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration was constructed. Through the determination of water content and volume reduction rate, the effect of thermal pressure filtration was studied. At the same time, the magnetic biochar was characterized by measuring the iodine adsorption value, specific surface area, saturation magnetization and SEM observation. The results showed that after thermal pressure filtration, the water content in the Cyanobacteria cake deceased to 65.3%, the corresponding volume reduction rate reached 71.3% and about 70% of the iron element was maintained in the Cyanobacteria cake. Densely aligned micropores (φ=1.5 μm) and ferromagnetic substance were observed on the surface of the magnetic biochar. The magnetic biochar had an iodine adsorption value of 391 mg·g−1, a specific surface area of 165 m2·g−1, and a saturation magnetization of 32 emu·g−1. Iron salt, as the interconnecting substance of the process, played the thermal flocculation role in thermal pressure filtration for hot dehydration, and the catalysis and magnetization roles in the magnetic biochar preparation. Pilot-scale process of magnetic biochar preparation by coupled thermal pressure filtration treated Cyanobacteria sludge would help to realize deep dehydration and resource utilization of Cyanobacteria sludge.
-
表 1 蓝藻饼的基本性质
Table 1. Basic properties of Cyanobacteria cake
调理压滤条件 蓝藻饼
含水率/%蓝藻饼
厚度/mm体积减
容率/%蓝藻饼
(VS/TS)/%10% FeCl3,80 ºC 65.3 15 71.3 78.5 10%聚合Fe2 (SO4) 3,80 ℃ 78.4 18 49.0 77.6 10%FeCl340%CaO,常温1) 65 16 57.2 45.6 注:1)目前在无锡当地处理企业的太湖蓝藻泥调理和压滤工艺。 表 2 磁性生物炭的基本性质
Table 2. Properties of the magnetic biochar
供试样品 碘吸附值/
(mg·g−1)比表面积/
(m2·g−1)总孔容/
(cm3·g−1)平均
孔径/nm得率/
%BC-300 266 56.8 0.03 122 56.4 BC-800 340 105 0.11 78.4 40.2 BC-800-W 391 165 0.35 32.2 38.7 表 3 蓝藻粉与3种生物炭的元素质量分数
Table 3. Elemental mass fractions of Cyanobacteria powder and three types of biochar
% 供试样品 C H O N P S Fe 蓝藻干颗粒 45.34 6.57 34.05 5.21 5.12 0.97 2.74 BC-300 51.03 6.18 30.83 5.42 5.10 0.91 0.35 BC-800 64.17 3.99 26.08 2.18 1.62 0.54 1.42 BC-800-W 65.22 3.86 24.96 2.27 1.60 0.53 1.56 -
[1] 段雯娟. 《美丽太湖宣言》吹响多方合作治污号角[J]. 地球, 2016, 1(2): 16-17. [2] 胡明明, 孙阳, 匡民, 等. 蓝藻藻华规模化清除技术应用研究[J]. 环境科学导刊, 2011, 30(6): 64-66. [3] QUIBLIER C, WOOD S A, ECHENIQUE S I, et al. A review of current knowledge on toxic benthic freshwater-ecology, toxin production and risk management[J]. Water Research, 2013, 47(15): 5464-5479. doi: 10.1016/j.watres.2013.06.042 [4] TANG C, LI Y P, ACHARYA K. Modeling the effects of external nutrient reductions on algal blooms in hyper-eutrophic lake Taihu, China[J]. Ecological Engineering, 2016, 94(13): 164-173. [5] LARRONDE L M, JIN X. Microalgal biomass dewatering using forward osmosis membrane: Influence of microalgae species and carbohydrates composition[J]. Algal Research, 2017, 23(5): 12-19. [6] LAPASIN R, PRICL S, BERTOCCHI C, et al. Rheology of culture broths and exopolysaccharide of cyanospira capsulata at different stages of growth[J]. Carbohydrate Polymers, 1992, 17(1): 1-10. doi: 10.1016/0144-8617(92)90017-K [7] 杜昕睿, 刘传旸, 刘跃岭, 等. 絮凝剂对藻类后续厌氧消化过程的影响[J]. 安徽农业科学, 2017, 45(9): 17-19. doi: 10.3969/j.issn.0517-6611.2017.09.005 [8] LAMA S, MUYLAERT K, KARKI T, et al. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation[J]. Bioresource Technology, 2016, 220(17): 464-470. [9] STRAUSS K. Process for reducing the water content of lignite: AU1791197[P]. 1997-08-28. [10] OLIVEIRA L C A, PEREIRA E, GUIMARAES I R, et al. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents[J]. Journal of Hazardous Materials, 2009, 165(3): 87-94. [11] JUANG R S, YEI Y C, LIAO C S, et al. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 18(46): 51-60. [12] SON E B, POO K M, CHANG J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macroalgal biomass[J]. Science of the Total Environment, 2018, 615(17): 161-168. [13] ZHOU X H, ZHOU J J, LIU Y C, et al. Preparation of magnetic biochar derived from cyclosorus interruptus for the removal of phenolic compounds: Characterization and mechanism[J]. Separation Science & Technology, 2018, 53(9): 1-12. [14] ZHANG M, GAO B, VARNOOSFADERANI S, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J]. Bioresource Technology, 2013, 130(11): 457-462. [15] ZHANG Z S, WANG X J, WANG Y, et al. Pb(Ⅱ) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves[J]. Journal of Environmental Sciences, 2013, 25(5): 1044-1053. doi: 10.1016/S1001-0742(12)60144-2 [16] 中华人民共和国住建部, 中国国家标准化管理委员会. 城市污水处理厂污泥检测方法: CJ/T 221-2005[S]. 北京: 中国环境科学出版社, 2005. [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤质颗粒生物炭试验方法 碘吸附值的测定: GB/T 7702.7-2008[S]. 北京: 中国环境科学出版社, 2008. [18] 余甜甜. 高压均质和热滤脱水联合促进蓝藻减量化试验研究[D]. 无锡: 江南大学, 2019. [19] CHAPUIS P R, AUBERTIN M. On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616-628. doi: 10.1139/t03-013 [20] 刘宇, 周辉, 于鹏, 等. 磁性炭基吸附剂的制备及其吸附与再生性能研究[J]. 工业水处理, 2015, 35(1): 48-51. doi: 10.11894/1005-829x.2015.35(1).048 [21] 史宸菲, 李雨濛, 冯瑞杰, 等. 蓝藻生物炭的制备及对过硫酸盐的活化效能[J]. 生态与农村环境学报, 2017, 33(12): 1140-1145. doi: 10.11934/j.issn.1673-4831.2017.12.011 [22] 金永龙, 徐南平. 固体碳直接还原反应的优化[J]. 烧结球团, 1996, 21(6): 31-35. [23] 李黎, 马力. Fe3O4磁性微粒的制备及表征[J]. 中国组织工程研究, 2011, 15(34): 6385-6387. doi: 10.3969/j.issn.1673-8225.2011.34.028 [24] 程伟凤, 李慧, 杨艳琴, 等. 城市污泥厌氧发酵残渣热解制备生物炭及其氮磷吸附研究[J]. 化工学报, 2015, 67(4): 1541-1548. [25] MA X J, YANG H M, YU L L, et al. Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation[J]. Materials, 2014, 7(6): 4431-4441. doi: 10.3390/ma7064431 [26] TRISTAN P, LJILIANA P. FTIR spectroscopy of nanodiamonds: Methods and interpretation[J]. Diamond & Related Materials, 2018, 89(22): 457-468. [27] 欧阳文璟, 王磊, 吴林汭, 等. 磁性碳纳米复合材料的制备及其吸附性能研究[J]. 化工管理, 2018, 27(33): 194-196. doi: 10.3969/j.issn.1008-4800.2018.33.133 [28] YANG J P, ZHAO Y C, MA S M, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology, 2016, 50(10): 12040-12047. [29] 符剑刚, 贾阳, 李政, 等. 磁性生物炭负载Mg-Fe水滑石的制备及其吸附水中Cd(Ⅱ)和Ni(Ⅱ) 的性能[J]. 化工环保, 2019, 39(5): 574-580. doi: 10.3969/j.issn.1006-1878.2019.05.015