-
随着中药产业的蓬勃发展,中药废水给环境带来的污染也随之加剧,引起了国家和社会的广泛关注[1-2]。中药废水具有成分复杂、有机污染物种类多、可生化性差、有毒等特点,是目前水处理领域的研究热点[3-4]。面对中药废水带来的环境问题,开发适宜于中药废水处理技术势在必行[5]。目前,我国中药废水处理工艺分为物化处理工艺和生化处理工艺。由于处理费用高,物化处理工艺普遍应用于中药废水的预处理。中药废水的生化处理工艺主要包括好氧生物法、厌氧生物法、厌氧-好氧法,其中,厌氧-好氧组合工艺是中药废水在实际工程应用中普遍采用的处理工艺。
电气石具有较强的对电极,异性电极使电气石两侧具有相反的极性,而且能把溶液的酸碱度微微调整。不管溶液最初是酸性还是碱性,均能把溶液的pH调节成偏碱性,这种环境适合产酸菌和产甲烷菌的成长和代谢[6-7]。电气石还可以降低水分子的结合程度,增加细胞的渗透性,使培养基中溶解的营养和细胞质中代谢产物更容易渗透细菌细胞膜,提高微生物活性[8-9]。将电气石与生物膜技术结合构建电气石强化生物膜系统,可极大地提高中药废水处理性能,加快推进该技术的实际应用,对实现我国“十三五”期间提出的水污染污染控制计划具有重要意义。
本研究将电气石与生物膜技术相结合,构建了电气石强化生物膜系统处理中药废水,考察了电气石强化生物膜系统的处理效果和生物膜特性,掌握了电气石强化生物膜系统启动过程的控制策略,确定了反应系统容积负荷、COD去除率和生物膜产甲烷系数等重要的运行参数,为中药废水处理提供参考。
电气石强化生物膜系统处理中药废水的启动及生物膜特性分析
Analysis on biofilm characteristics and start-up of biofilm system enhanced by tourmaline treating Chinese medicine wastewater
-
摘要: 将电气石与生物膜技术结合构建电气石强化生物膜系统处理中药废水,通过电气石调节生物膜微环境,以增强微生物代谢活性,从而提高了反应系统的处理能力。结果表明:电气石强化厌氧流化床(AFBR)反应系统经历160 d完成中药废水的启动实验,反应系统COD去除率达到87.8%,容积负荷达到5.34 kg·(m3·d)−1,生物膜产甲烷活性达到126.4 mL·(g·d)−1;电气石强化好氧流化床(FBR)反应系统统经历35 d完成启动实验后,出水COD稳定在76.5 mg·L−1,反应系统对应的COD去除率和容积负荷分别为90.3%和1.4 kg·(m3·d)−1。中药废水依次经AFBR和FBR处理后,出水水质满足《中药类制药工业水污染物排放标准》(GB 21906-2008)排放要求。以上结果可为实际工程项目提供理论依据和参考。Abstract: In this study, the combination of tourmaline and biofilm technology was to build the tourmaline enhanced biofilm system for Chinese medicine wastewater treatment. The tourmaline was used to regulate the micro-environment of the biofilm, enhance the metabolic activity of microorganisms and improve the treatment efficiency of the reaction system. The results showed that after 160 d, the start-up of tourmaline enhanced anaerobic fluidized bed reactor (AFBR) for Chinese medicine wastewater treatment was completed. COD removal efficiency of the reaction system reached 87.8%, the volume loading reached 5.34 kg·(m3·d)−1, and the methanogenic activity of biofilm reached 126.4 mL·(g·d)−1. After 35 days, the tourmaline enhanced fluidized bed reactor (FBR) was completed. The effluent COD maintained at 76.5 mg·L−1. The COD removal efficiency and volume loading of the reaction system were 90.3% and 1.4 kg·(m3·d)−1, respectively. Chinese medicine wastewater was treated by AFBR and FBR successively. Its effluent water quality met the discharge requirements of Discharge Standard of Water Pollutants in Traditional Chinese Medicine Pharmaceutical Industry (GB 21906-2008). This provides theoretical support and reference for actual projects.
-
Key words:
- tourmaline /
- biofilm system /
- Chinese medicine wastewater /
- start-up
-
表 1 AFBR反应系统运行参数
Table 1. Operational parameters of the AFBR reactor
阶段 时间/d HRT/h 进水COD/
(mg·L−1)葡萄糖贡献COD/(mg·L−1) 进水负荷/
(kg·(m3·d)−1)第1阶段 1~26 48 2 000 1 000 1.00 第2阶段 27~54 48 3 000 0 1.50 第3阶段 55~84 36 4 000 0 2.67 第4阶段 85~110 36 5 000 0 3.33 第5阶段 111~144 36 6 000 0 4.00 第6阶段 137~157 24 6 000 0 6.00 表 2 不同阶段TPU填料表面生物膜特性
Table 2. Characteristics of biofilm attached to TPU carriers at different periods
阶段 EPS/
(mg·g−1)蛋白质/
(mg·g−1)多糖/
(mg·g−1)蛋白质/
多糖生物膜质量/
(g·m−2)第1阶段 162.3 88.4 59.3 1.5 60.6 第2阶段 227.4 128.4 78.6 1.6 65.3 第3阶段 275.7 168.4 82.5 2.0 69.7 第4阶段 299.7 199.7 73.1 2.7 72.6 第5阶段 317.3 221.2 67.6 3.3 74.3 第6阶段 323.1 228.4 65.7 3.5 75.5 表 3 出水水质
Table 3. Water quality of effluent
检测结果及相应标准 COD/(mg·L−1) BOD5/(mg·L−1) 氨氮/(mg·L−1) 总氮/(mg·L−1) 总磷/(mg·L−1) SS/(mg·L−1) pH 平均浓度 76.5 15.3 2.7 13.7 0.2 35.2 7.7 排放标准 100 20 8 20 0.5 50 6~9 -
[1] 殷勤, 年跃刚, 周岳溪, 等. 中药制药行业水资源再利用途径及可行性分析[J]. 工业水处理, 2018, 38(11): 12-15. [2] 李洁, 申俊龙, QIAN D. 中药资源产业化过程废弃物资源化的理论与模式分析[J]. 中草药, 2017, 48(10): 2153-2158. doi: 10.7501/j.issn.0253-2670.2017.10.033 [3] 余登喜, 丁杰, 刘先树, 等. 强化混凝预处理削减中药废水的毒性[J]. 环境工程学报, 2016, 10(11): 6133-6138. doi: 10.12030/j.cjee.201505205 [4] 冯丽霞, 赵艺, 王亚晓, 等. 两级水解/接触氧化/BAF组合工艺处理中药废水[J]. 中国给水排水, 2019, 35(6): 124-127. [5] 刘立, 刘畅, 农燕凤, 等. 中药废水处理工程设计实例及分析[J]. 中国给水排水, 2018, 34(8): 89-92. [6] JI Y B, TAN C, CUI D, et al. Enhanced effects of tourmaline on moving bed biofilm reactor-based partial nitrification process[J]. Journal of Environmental Engineering, 2019, 145(4): 91-102. [7] 韩雅红, 邱珊, 马放, 等. 电气石对反应器快速启动及生物多样性的影响[J]. 水处理技术, 2018, 44(7): 30-40. [8] TAN C, XU H R, CUI D, et al. Effects of tourmaline on nitrogen removal performance and biofilm structures in the sequencing batch biofilm reactor[J]. Journal of Environmental Sciences, 2018, 67(5): 130-138. [9] LI W L, TAN C, CUI D, et al. Influence of tourmaline on the activity of ANAMMOX bacteria and ANAMMOX reaction[J]. Journal of Environmental Engineering, 2018, 144(8): 59-68. [10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [11] 马托, 马宏瑞, 杜占鹏, 等. 硫化物在厌氧污泥中的分布和对产甲烷活性的抑制作用[J]. 环境化学, 2005, 24(5): 550-553. doi: 10.3321/j.issn:0254-6108.2005.05.013 [12] 龙向宇, 龙腾锐, 唐然, 等. 阳离子交换树脂提取活性污泥胞外聚合物的研究[J]. 中国给水排水, 2008, 24(3): 29-38. doi: 10.3321/j.issn:1000-4602.2008.03.008 [13] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. doi: 10.1016/0003-2697(76)90527-3 [14] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [15] 张庆云, 谢学辉, 柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展, 2017, 36(9): 3492-3501. [16] TAN C, CUI D, LIU Y, et al. Influence of tourmaline on the anaerobic ammonium oxidation process in sequencing batch reactors[J]. Journal of Environmental Engineering, 2017, 143(9): 53-64. [17] HUANG X D, XU Q X, WU Y X, et al. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation[J]. Bioresource Technology, 2019, 288(9): 598-609. [18] 赵明明, 李夕耀, 李璐凯, 等. 碱度类型及浓度对剩余污泥中温厌氧消化的影响[J]. 中国环境科学, 2019, 39(5): 1954-1960. doi: 10.3969/j.issn.1000-6923.2019.05.019 [19] MENG D Z, WU J, CHEN K L, et al. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment, 2019, 687(15): 494-504. doi: 10.1016/j.scitotenv.2019.05.387 [20] SHENG G P, YU H Q, LI X Y, et al. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [21] 闫强, 韩文彪, 陈灏, 等. 连续式两相厌氧消化的产气潜能[J]. 环境工程学报, 2018, 12(4): 1246-1253. doi: 10.12030/j.cjee.201710121 [22] 李俊生, 谭冲, 夏至, 等. UASB反应器处理PTA废水的启动及污泥特性分析[J]. 环境工程学报, 2018, 12(9): 90-98. [23] 李青, 成小英. 不同填料生物反应器中脱氮微生物群落比较分析[J]. 安全与环境学报, 2017, 17(6): 2360-2365.