-
近年来,随着我国农业产业化工作的不断推进,规模化畜禽养殖企业得到了迅猛发展,但养殖规模急剧扩增的同时也加剧了污染物排放与生态环境保护之间的矛盾。据2010年全国第一次污染源普查公报的结果显示,畜禽养殖业对环境带来的污染已然成为我国农业面源污染之首,其排放的化学需氧量(COD)、总氮(TN)和总磷(TP)分别占农业面源污染的95.8%、37.9%和56.3%[1]。目前,规模化养猪废水的处理模式主要有3种:还田模式、工业化处理模式以及生态处理模式[2]。传统的还田模式不仅需要大量的耕种土地进行消纳,还存在传播人畜疾病的危险;工业化处理模式虽占地面积小,但是投资大,能耗高,且需要专门的技术人员运行维护。规模化养猪场多远离城市,土地资源相对丰富,高效的生态处理模式在我国南方地区具有应用推广的优势[3]。
目前,国内外大部分规模化养猪场多采用工业化处理模式,其流程基本一致,多为固液分离-厌氧消化-好氧组合工艺,但是对于经厌氧消化后的低C/N沼液废水,由于碳源不足导致好氧段工艺普遍存在脱氮效率低、出水水质难达标等问题[4-5]。序批式活性污泥法(sequencing batch reactor,SBR)作为养猪废水好氧段常用生物处理技术,具有工艺简单、运行方式灵活、自动化程度高等优点,但利用该工艺对消化液的脱氮除磷问题依旧未得到很好的解决[6-7]。相较于传统的SBR工艺,间歇曝气序批式活性污泥法 (intermittently aerated SBR,IASBR)能够降低硝化过程中氧气的消耗量和反硝化过程中对碳源的需求量,但碳源不足仍然是制约短程硝化反硝化处理效果的主要因素[8-10]。王亮等[1]在间歇曝气序批式火性污泥法的基础上进行了改进,提出分步进水序批式活性污泥法(step-fed SBR,SFSBR),该工艺在每一次运行周期的缺氧段补充35%的原水为反硝化过程提供碳源。但相较于甲醇或乙酸钠等外加速效碳源,反硝化过程中原水利用率偏低,脱氮效率不高,并且原水中含有较高浓度的TP,使得SFSBR系统除磷工艺也不理想[11]。因此,选择性地投加易于生物降解的有机物,可以快速有效地提高低C/N废水的脱氮效率[12]。
近年来,以稳定塘为代表的生态处理工艺得到广泛应用。稳定塘作为一种天然的或经过人为修整构建的生态池塘,通过对塘内的废水进行稀释和沉淀作用,水生植物的吸收作用、微生物代谢作用以及浮游生物作用使得污染物得以降解[13]。传统的稳定塘处理技术按照工作原理可分为好氧塘、兼性塘、厌氧塘和曝气塘。随着塘工艺运行设计的不断改进和完善,生物滤塘、藻类沉降塘、水生植物塘和高效复合厌氧塘等新型塘处理工艺逐渐解决了传统塘工艺占地面积大、水力停留时间长以及塘泥堆积严重等问题[14-16]。在实际的工程应用中,单一的塘处理工艺很难对高浓度的养殖废水进行高效处理,通常是将不同类型的塘处理工艺进行优化组合来提高养殖废水的处理效果,以此实现达标排放[17]。
本研究主要针对规模化养猪场经厌氧消化后的低C/N废水(沼液)在SBR段脱氮效率低和出水不达标的问题,在SBR段投加碳源强化脱氮的基础上,结合生态处理技术的特点,依据猪场周边实际情况,提出并构建了串联生物强化稳定塘处理工艺;通过现场检测分析该组合工艺对养殖废水主要污染物(COD、氨氮、总氮、总磷)的去除效果,实现减控去污的目的,以期为规模化养猪场的废水达标处理提供参考。
SBR串联生物强化稳定塘处理养猪废水工艺优化
Process optimization of SBR-biological stabilization ponds for swine wastewater treatment
-
摘要: 针对亚热带地区某规模化养猪场SBR处理低碳氮比(C/N)沼液出水不达标的问题,研究了以乙酸钠为速效碳源时其投加量对SBR运行效果的影响,并采用4级串联生物强化稳定塘工艺对SBR出水进行强化处理。结果表明:当乙酸钠投加量为400 mg·L−1时,SBR工艺对COD、氨氮和总氮的平均去除率分别从16%±1%、25%±4%和14%±1%提高到了32%±1%、55%±2%、27%±4%;串联生物强化稳定塘(BSPs)工艺对COD、氨氮、总氮和总磷的平均去除率达到了65%±2%、80%±4%、79%±3%和83%±4%,出水平均浓度分别为(155±5)、(67±2)、(89±2)和(6±1) mg·L−1,均可满足《畜禽养殖业污染物排放标准》(GB 18596-2001)的要求。以生物膜和双穗雀稗构成的前2级生物强化稳定塘系统对COD、氨氮、总氮和总磷的消纳量分别占整个串联稳定塘系统消纳量的57%、50%、51%和81%。进一步分析可知,串联生物强化稳定塘工艺对养猪废水主要污染物(COD、氨氮、总氮、总磷)的去除效果显著,采用此技术可实现废水的达标排放。
-
关键词:
- 养猪废水 /
- 序批式活性污泥法(SBR) /
- 生物强化稳定塘(BSPs) /
- 双穗雀稗 /
- 生物膜
Abstract: In order to solve the problem not up to the regulatory standards for sequencing batch reactor (SBR) effluent during treating the low C/N ratio swine wastewater from a large-scale pig farm in a subtropical area, the influence of sodium acetate dosage on the SBR treatment of swine wastewater was studied. In addition, a four-stage biological stabilization ponds (BSPs) was used to strengthen the SBR effluent treatment. The results showed that at sodium acetate dosage of 400 mg·L−1, the average removal rates of COD, ammonia nitrogen, and total nitrogen in the SBR were improved from 16%±1%, 25%±4%, 14%±1% to 32%±1%, 55%±2%, 27%±4%, respectively. The average removal rates of COD, ammonia nitrogen, total nitrogen and total phosphorus in the four-stage BSPs were 65%±2%, 80%±4%, 79%±3% and 83%±4%, respectively, and their corresponding average effluent concentrations were (155±5), (67±2), (89±2) and (6±1) mg·L−1, respectively, all of which met the requirements of the Discharge Standards of Pollutants for Livestock and Poultry Breeding(GB 18596-2001). The first two stages of the BSPs, which consisted of biofilms and Paspalumdistichum, could account for 57%, 50%, 51% and 81% of the total reduction of COD, ammonia nitrogen, total nitrogen, and total phosphorus along the entire BSPs, respectively. These results indicated that SBR-biological stabilization ponds could achieve the significant removal effects on the main pollutants in swine wastewater, such as COD, ammonia nitrogen, and total nitrogen and total phosphorus, and realize the discharge standard. -
表 1 原进、出水水质与排放标准
Table 1. Original quality of influent and effluent standard
水质及标准 pH COD/(mg·L−1) SS/(mg·L−1) NH4+-N/(mg·L−1) TP/(mg·L−1) 原进水 6~9 3 500~6 000 2 000~4 000 620~960 100~280 原出水 6~9 300~540 450~600 300~510 30~40 排放标准 6~9 ≤400 ≤200 ≤80 ≤8 表 2 各处理单元对污染物的消纳量与容积负荷
Table 2. Amount of pollutants reduction and volumetric loading in each treatment unit
处理单元 消纳量/(kg·d−1) 容积负荷/(g·(m3·d)−1) COD 氨氮 总氮 总磷 COD 氨氮 总氮 总磷 第1级稳定塘 10.4±1.0 9.2±0.8 9.6±0.7 1.8±0.1 5.2±0.5 4.5±0.4 4.7±0.3 0.9±0.1 第2级稳定塘 9.8±1.1 6.9±0.7 9.8±0.5 1.1±0.1 6.3±0.7 4.4±0.5 6.3±0.3 0.7±0.1 第3级稳定塘 10.5±0.8 12.8±0.5 13.5±0.5 0.3±0.1 1.9±0.1 2.3±0.1 2.4±0.1 0.1±0.0 第4级稳定塘 4.7±0.7 3.6±0.3 5.1±0.3 0.3±0.1 5.9±0.9 4.4±0.3 6.4±0.3 0.4±0.0 -
[1] 王亮, 陈重军, 陈英旭, 等. 规模化猪场养殖废水UASB-SFSBR-MAP处理工艺中试研究[J]. 环境科学, 2013, 34(3): 979-985. [2] 段妮娜, 董滨, 何群彪, 等. 规模化养猪废水处理模式现状和发展趋势[J]. 净水技术, 2008, 27(4): 9-15. doi: 10.3969/j.issn.1009-0177.2008.04.003 [3] 高春芳, 刘超翔, 王振, 等. 人工湿地组合生态工艺对规模化猪场养殖废水的净化效果研究[J]. 生态环境学报, 2011, 20(1): 154-159. doi: 10.3969/j.issn.1674-5906.2011.01.027 [4] SU J J, LIU Y L, SHU F J, et al. Treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three-step piggery wastewater treatment (TPWT) process in Taiwan[J]. Journal of Environmental Science & Health Part A, 1997, 32(1): 55-71. [5] BORTONE G. Integrated anaerobic/aerobic biological treatment for intensive swine production[J]. Bioresource Technology, 2009, 100(22): 5424-5430. doi: 10.1016/j.biortech.2008.12.005 [6] 董宝刚, 宋小燕, 刘锐, 等. 间歇曝气SBR与传统SBR处理养猪沼液的比较研究[J]. 环境科学, 2016, 37(11): 4309-4316. [7] 邓良伟, 郑平, 李淑兰, 等. 添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J]. 环境科学, 2005, 26(6): 107-111. [8] 宋小燕, 刘锐, 税勇, 等. 间歇曝气SBR处理养猪沼液的短程脱氮性能[J]. 环境科学, 2016, 37(5): 1873-1879. [9] LI J, ELLIOTT D, NIELSEN M, et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions[J]. Biochemical Engineering Journal, 2011, 55(3): 215-222. doi: 10.1016/j.bej.2011.05.002 [10] 王欢, 裴伟征, 李旭东, 等. 低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J]. 环境科学, 2009, 30(3): 815-821. doi: 10.3321/j.issn:0250-3301.2009.03.032 [11] OBAJA D, MACE S, MATA-ALVAREZ J. Biological nutrient removal by a sequencing batch reactor(SBR) using an internal organic carbon source in digested piggery wastewater[J]. Bioresource Technology, 2005, 96(1): 7-14. doi: 10.1016/j.biortech.2004.03.002 [12] 邵留, 徐祖信, 尹海龙. 污染水体脱氮工艺中外加碳源的研究进展[J]. 工业水处理, 2007, 27(12): 10-14. doi: 10.3969/j.issn.1005-829X.2007.12.003 [13] 张巍, 许静, 李晓东, 等. 稳定塘处理污水的机理研究及应用研究进展[J]. 生态环境学报, 2014, 23(8): 1396-1401. doi: 10.3969/j.issn.1674-5906.2014.08.023 [14] 潘涌璋, 唐纪进, 张临苏. 高级综合稳定塘处理养猪场废水[J]. 环境工程, 2004, 22(5): 12-13. doi: 10.3969/j.issn.1000-8942.2004.05.003 [15] COSTA R H R D, MEDRI W. Modelling and optimisation of stabilisation ponds system for the treatment of swine wastes: Organic matter evaluation[J]. Brazilian Archives of Biology and Technology, 2002, 45(3): 385-392. doi: 10.1590/S1516-89132002000300017 [16] CRUDDAS P, WANG K, BEET D, et al. Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works[J]. Ecological Engineering, 2014, 63: 64-71. doi: 10.1016/j.ecoleng.2013.12.011 [17] FORBES D A, REDDY G, HUNT P G, et al. Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater[J]. Journal of Environmental Science and Health Part A, 2010, 45(7): 803-809. doi: 10.1080/10934521003708927 [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] 张兰河, 丘晓春, 张宇, 等. 碳源投加方式对SBR工艺脱氮速率的影响[J]. 环境工程学报, 2015, 9(2): 731-736. doi: 10.12030/j.cjee.20150237 [20] 郑效旭. 规模化养猪废水处理技术研究与工艺优化[D]. 兰州: 兰州理工大学, 2019. [21] 邓良伟, 郑平, 陈子爱. Anarwia工艺处理猪场废水节能效果的研究[J]. 农业工程学报, 2006, 22(12): 172-175. doi: 10.3321/j.issn:1002-6819.2006.12.036 [22] 金海峰, 佟晨博, 朱永健, 等. UASB+A/O+Fenton组合工艺处理生猪养殖废水工程实例[J]. 资源节约与环保, 2015(12): 54-55. doi: 10.3969/j.issn.1673-2251.2015.12.044 [23] 莫负恩, 顾洪如, 沈益新, 等. 双穗雀稗对猪场污水的净化效果[J]. 草地学报, 2010, 18(3): 469-472. doi: 10.11733/j.issn.1007-0435.2010.03.029 [24] 杨清海, 李秀艳, 赵丹, 等. 植物-水生动物-填料生态反应器构建和作用机理[J]. 环境工程学报, 2008, 2(6): 852-857.