-
焦化废水是焦化、煤气化和焦化副产物回收过程中产生的一类典型工业废水,主要来自于炼焦过程中产生的剩余氨水、冷却水及其他污水[1],组分复杂,污染物浓度高、毒性大、易发生诱变和致癌[2-3]。焦化废水一般经氨汽提和溶剂萃取预处理后进一步进行生物处理[4-5],然而生化出水COD仍为200~300 mg·L−1[6],难于达到相关排放标准[7],需要进一步深度处理[8]。
常见的深度处理技术有臭氧氧化、光催化氧化和Fenton氧化等。Fenton氧化方法在实际的废水深度处理中最为常用,主要通过H2O2/Fe2+在酸性条件下产生 · OH,以降解污染物[9]。然而H2O2利用率低,存在投药量大、反应效率差等缺点[10]。为此,近年来探索了许多类芬顿技术,如光芬顿法[11-12]利用与亚铁离子协同催化H2O2的方式提高处理效果,但反应太阳能利用率低,能耗大;电芬顿法[11, 13]利用O2在电解池阴极产生的H2O2与亚铁离子反应,生成 · OH和Fe3+,但阴极材料电流效率低,H2O2产量不高。为此,以Fenton反应为基础的相关处理技术仍在研究中,如微波与Fenton、Fe-EDTA的联合等[12, 14],在研究中发现,这些类芬顿技术可以针对性地克服常规Fenton存在的反应效率低等问题,以达到更有效的处理效果。
微波是一种超高频电磁波(0.3~300 GHz),为避免干扰雷达和电信频率,用于工业和民用的频率分别为915 MHz和2 450 MHz,其中915 MHz的微波穿透深度要高于2 450 MHz近3倍[15]。当微波辐射与Fenton联用时,由于微波穿透性强,能直接加热反应物分子,降低反应的活化能和分子的化学键强度,因此,可显著提高Fenton反应活性,从而降低Fenton反应时间、增强反应效率[16]。陈艳芳等[17]采用微波诱导Fenton降解水中对硝基氯苯,对硝基氯苯和COD的去除率分别可达98.9%和90.8%;李硕等[18]采用微波强化Fenton方法降解了水中的BPA,发现可减少H2O2和Fe2+的投加量,促进 · OH的生成。但微波强化Fenton反应对于不同实际废水的处理效果及其对应的反应机理有待于进一步的研究。
本研究以焦化废水的生化出水作为研究对象,探讨了利用微波强化Fenton处理的效果和应用的可行性。在优化且确定Fenton反应条件的基础上,对同等实验条件下微波强化Fenton反应与Fenton反应的处理效果进行了比较,并初步探讨了在微波引入后Fenton处理效果显著提升的可能机理,可为目前我国焦化废水处理和达标排放处理技术的选择提供参考。
微波强化Fenton技术对焦化废水生化出水的深度处理
Advanced treatment of bio-treated coking wastewater by microwave-enhanced Fenton process
-
摘要: 针对焦化废水生物处理后COD难于达标排放的问题,以焦化废水生化出水为对象,对微波强化Fenton技术(频率915 MHz)的深度处理效果和反应机理进行了探讨。结果表明:在Fe2+和H2O2投加量分别为1.8 mmol·L−1和15.6 mmol·L−1条件下,Fenton处理方法对COD的最佳去除率仅为18%,利用微波强化Fenton技术对COD的去除率可提升到77%,出水COD可降至52 mg·L−1,满足《炼焦化学工业污染物排放标准》;通过比较Fenton和微波强化Fenton反应出水过滤后的COD,发现Fenton反应对COD的去除率可由18%提升至72%,表明泥相可进一步吸附部分COD;而微波强化Fenton反应的COD去除率仅略微提高至81%,表明氧化是微波强化Fenton反应的主要作用机理,这可能与微波辐射通过热效应或非热效应可加快羟基自由基的生成、从而提高了氧化反应效率有关。以上结果表明,微波强化Fenton反应是焦化废水达标排放的一种可供选择的技术,可为目前我国焦化废水处理和达标排放处理技术的选择提供借鉴。
-
关键词:
- 焦化废水 /
- 微波辐射 /
- 微波强化Fenton /
- 氧化 /
- 吸附
Abstract: Conventional biological treatment of coking wastewater is still hardly meet the COD discharge standard, thus, for biochemical effluent of coking wastewater, the advanced treatment effect and reaction mechanism of microwave-enhanced Fenton technology (915 MHz) were discussed in this paper. The results showed that at Fe2+ dosage of 1.8 mmol·L−1 and H2O2 dosage of 15.6 mmol·L−1, the best COD removal efficiency by Fenton treatment was only 18%, while the COD removal efficiency by microwave-enhanced Fenton technology increased up to 77%, and COD in effluent decreased to 52 mg·L−1, which could meet the pollutants discharge standards in coking chemical industry. By comparing the COD values in the filtered effluents between Fenton and microwave enhanced Fenton reaction, the COD removal efficiency by Fenton reaction could increase from 18% to 72%, which indicated that the sludge phase could further adsorb part of COD. The COD removal efficiency by microwave enhanced Fenton reaction slightly increased to 81%, indicating that oxidation was the main mechanism of microwave enhanced Fenton reaction, which may be related to the acceleration of hydroxyl radical generation through thermal or non-thermal effects of microwave radiation enhancement, and the improvement of the oxidation reaction efficiency. This study shows that microwave enhanced Fenton is an alternative technology for the coking wastewater discharge below the standard, provides reference for the technology selection to treat the coking wastewater and discharge below the standard.-
Key words:
- coking wastewater /
- microwave radiation /
- microwave-enhanced Fenton /
- oxidation /
- adsorption
-
-
[1] HUO H, LEI Y, ZHANG Q, et al. China's coke industry: Recent policies, technology shift, and implication for energy and the environment[J]. Energy Policy, 2012, 51: 397-404. doi: 10.1016/j.enpol.2012.08.041 [2] WANG J L, QUAN X C, WU L B, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater[J]. Process Biochemistry, 2002, 38(5): 777-781. doi: 10.1016/S0032-9592(02)00227-3 [3] 韦朝海, 贺明和, 任源, 等. 焦化废水污染特征及其控制过程与策略分析[J]. 环境科学学报, 2007, 27(7): 1083-1093. doi: 10.3321/j.issn:0253-2468.2007.07.003 [4] LI H Q, HAN H J, DU M A, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technology, 2011, 102(7): 4667-4673. doi: 10.1016/j.biortech.2011.01.029 [5] WANG W, MA W C, HAN H J, et al. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor[J]. Bioresource Technology, 2011, 102(3): 2441-2447. doi: 10.1016/j.biortech.2010.10.140 [6] 张能一, 唐秀华, 邹平, 等. 我国焦化废水的水质特点及其处理方法[J]. 净水技术, 2005, 24(2): 42-47. [7] 中华人民共和国国家质量监督检验检疫总局, 环境保护部. 炼焦化学工业污染物排放标准: GB 16171-2012[S]. 北京: 中国环境科学出版社, 2012. [8] 刘亮, 王少波, 原培胜, 等. 高级氧化法处理焦化废水的研究进展[J]. 舰船科学技术, 2008, 30(3): 47-50. doi: 10.3404/j.issn.1672-7649,2008.03.007 [9] 李静, 刘国荣. 臭氧高级氧化技术在废水处理中的应用[J]. 污染防治技术, 2007, 20(6): 55-57. [10] 张潇逸, 何青春, 蒋进元, 等. 类芬顿处理技术研究进展综述[J]. 环境科学与管理, 2015(6): 58-61. doi: 10.3969/j.issn.1673-1212.2015.06.014 [11] BOSSMANN S H, OLIVEROS E, GOB S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions[J]. Journal of Physical Chemistry A, 1998, 102(28): 5542-5550. doi: 10.1021/jp980129j [12] LIU B, LI S, ZHAO Y J, et al. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 213-219. doi: 10.1016/j.jhazmat.2009.11.015 [13] 林莉, 袁松虎, 李泰平, 等. 微波技术处理焦化废水中的氨氮研究[J]. 环境科学与技术, 2006, 29(8): 80-81. doi: 10.3969/j.issn.1003-6504.2006.08.033 [14] LI N, WANG P, ZUO C, et al. Microwave-enhanced Fenton process for DMSO-containing wastewater[J]. Environmental Engineering Science, 2010, 27(3): 271-280. doi: 10.1089/ees.2009.0384 [15] 蔡川川. 高有机硫炼焦煤对微波响应规律研究[D]. 淮南: 安徽理工大学, 2013. [16] SANZ J, LOMBRANAJ I, LIUS A M D, et al. Microwave and Fenton’s reagent oxidation of wastewater[J]. Environmental Chemistry Letters, 2003, 1(1): 45-50. doi: 10.1007/s10311-002-0007-2 [17] 陈芳艳, 唐玉斌, 钟宇, 等. 微波诱导Fenton试剂氧化降解水中对硝基氯苯[J]. 环境科学与技术, 2008, 31(9): 46-49. doi: 10.3969/j.issn.1003-6504.2008.09.013 [18] 李硕, 张广山, 王鹏. 微波-Fenton高级氧化工艺降解水中BPA[J]. 环境工程学报, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035 [19] 周琳. Fenton高级氧化法深度处理焦化废水的试验研究[D]. 郑州: 郑州大学, 2016. [20] 陈传好, 谢波, 任源, 等. Fenton试剂处理废水中各影响因子的作用机制[J]. 环境科学, 2000, 21(3): 93-96. doi: 10.3321/j.issn:0250-3301.2000.03.023 [21] 章琴琴, 宋诚, 华亚妮, 等. Fenton法降解垃圾渗滤液中的溶解性有机质[J]. 环境工程学报, 2017, 11(4): 93-96. [22] TOKIMURA M, WADA Y, USAMI Y, et al. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction-preventing emission of by-products[J]. Chemosphere, 2012, 89(10): 1238-1242. doi: 10.1016/j.chemosphere.2012.07.018 [23] CHU L B, WANG J L, DONG J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide[J]. Chemosphere, 2012, 86(4): 409-414. doi: 10.1016/j.chemosphere.2011.09.007 [24] 彭贤玉, 杨春平, 董君英, 等. Fenton-混凝沉淀法处理焦化废水的研究[J]. 环境科学与技术, 2006, 29(10): 72-74. doi: 10.3969/j.issn.1003-6504.2006.10.029 [25] 陈根荣. Fenton试剂氧化-混凝深度处理焦化废水的试验研究[D]. 淮南: 安徽理工大学, 2009. [26] 张万辉, 韦朝海, 吴超飞, 等. 焦化废水中有机物的识别、污染特性及其在废水处理过程中的降解[J]. 环境化学, 2012, 31(10): 1480-1486. [27] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [28] QUAN X, ZHANG Y B, CHEN S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances[J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1/2): 216-222. doi: 10.1016/j.molcata.2006.08.079 [29] GU D M, CHU Y Y, WANG Z B, et al. Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 9-18. [30] MILOSEVIC I, JOUNI H, DAVID C, et al. Facile microwave process in water for the fabrication of magnetic nanorods[J]. Journal of Physical Chemistry C, 2011, 115(39): 18999-19004. doi: 10.1021/jp205334v [31] 吴超飞, 王刚, 杨波, 等. 催化氧化法处理含甲醛毒性有机废水的工程试验[J]. 环境工程, 2002, 20(2): 7-9. doi: 10.3969/j.issn.1000-8942.2002.02.001 [32] HE M C, SHI Y H, LIN C Y. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China[J]. Journal of Environmental Sciences, 2008, 20(11): 1294-1299. doi: 10.1016/S1001-0742(08)62224-X [33] BU L, WANG K, ZHAO Q L, et al. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1096-1105. doi: 10.1016/j.jhazmat.2010.03.118