-
氮氧化物(NOx)是造成空气污染的主要污染物之一。在脱除NOx的应用研究中,目前研究较多的方法是选择性催化还原NOx(SCR),如以NH3为还原剂的方法(NH3-SCR)。但在20世纪90年代,IWAMOTO[1]和HELD等[2]发现,富氧条件下,Cu-ZSM-5催化剂可利用烃类物质选择性催化还原NO,烃类的SCR还原NO受到广泛关注。已有研究[3-6]对不同类型的催化剂对C2~C3的碳氢燃料的SCR脱硝特性进行了深入的探讨,在一定条件下取得了丰富的结果。
与其他烃类相比,作为天然气主要成分的甲烷储量丰富,价格低廉,远比其他烃类容易获得,因此,甲烷的选择性催化脱硝(CH4-SCR)具有显著的工程应用优势。CH4的碳氢键能较高,CH4的活化非常困难,在有O2条件下,易发生燃烧反应[7]。因此,对C2~C3烃具有催化活性的催化剂,对于CH4-SCR的反应活性却很低[8]。目前,一些研究[9-22]表明Co、In、Pd、Ga等离子具有一定的CH4-SCR催化活性。但是由表1可知,使用Co、In、Pd等作为活性金属的CH4-SCR催化效率较低。虽然COSTILLA等[13]使用离子交换法制得Pd-mordenite催化剂可在600 ℃达到90%脱硝效率,但是N2选择性较差,并且在有5%H2O的条件下,脱硝效率不超过60%。而GIL等[14]发现,经脱羟基处理后的镁碱沸石分子筛负载Co、In后(InCoFER),在0.25%H2O的条件下,450 ℃时达到97.5%的NO转化率,然而实验中加入的水蒸气的量过少,难以准确地评估InCoFER催化剂的抗水性能。由表1可知,镓作为活性金属,具有很高的甲烷催化活性。但是研究[18-22]发现,通过负载、溶剂、喷雾热解、共沉淀等方法制成的Ga2O3-Al2O3均受水蒸气影响较大,仅加入少量的水蒸汽,便会导致催化剂效率下降至30%。MIYAHARA等[19]研究发现,利用溶剂热法制备γ-Ga2O3-Al2O3的催化剂在2.5%H2O条件下,550 ℃仍具有50%的CH4催化NO活性;但在5%H2O条件下,溶剂法制备得到的γ-Ga2O3-Al2O3在500 ℃催化效率不足20%[20]。因此,选择使用镓基催化剂仍存在抗水差的问题。
已有研究[23]表明,金属铁在HC还原NO的反应中具有良好的抗水抗硫特性。负载了Fe的堇青石催化剂可在600 ℃达到97%的NO还原效率,通入2.1%水蒸气,仍保持60%以上的催化效率[24]。以柱撑黏土为载体负载铁离子的催化剂Fe/Ti-PILC[25]和Fe-PILC[26],在350 ℃可达到95%以上的脱硝效率,同时在10%水蒸气和0.2%的SO2下,400 ℃仍保持80%的催化效率。有研究[27]发现,采用Fe修饰的Fe-Ag/Al2O3/CM催化剂,可在500 ℃达到超过90%的脱硝效率,分别通入8%水蒸气和0.02%的SO2,脱硝效率基本无变化,有效地提高了Ag/Al2O3/CM 催化剂抵抗烟气中的SO2和H2O的能力。为改善Ga2O3-Al2O3催化活性,并提高其抗水能力,本研究采用Fe对镓基催化剂进行修饰,制备Fe/Ga2O3-Al2O3催化剂,对其CH4-SCR反应特性进行实验研究,并通过XRD、N2吸附脱附、XPS、H2-TPR、Py-IR等技术手段对催化剂的物理化学性质进行表征。
-
称取一定量的Ga(NO3)3·xH2O、Al(NO3)3·9H2O和Fe(NO3)3·9H2O,混合溶解在100 mL的去离子水中,得到盐溶液。根据研究[22],固定Ga与Al物质的量的比例为3∶7。另取5倍沉淀当量的氨水,溶入200 mL去离子水中,得到沉淀剂溶液。在室温条件下搅拌,往沉淀剂溶液中缓慢滴加金属盐溶液,在室温条件下,剧烈搅拌1 h。从溶液中离心得到前驱体,依次使用去离子水和无水乙醇各洗涤3次,在干燥箱中80 ℃条件下干燥12 h,然后在马弗炉内700 ℃、空气气氛条件下煅烧2 h,自然冷却到室温,得到xFe/Ga2O3-Al2O3催化剂(其中x为Fe所占金属离子物质的摩尔比)。
-
在程序控温固定床石英管微反应器上进行xFe/Ga2O3-Al2O3催化CH4选择性还原NO的测试,石英管内径为8 mm。催化剂压片、粉碎、过筛,至24~50目,将0.5 g催化剂放置于石英管固定床内。配气采用模拟烟气环境,模拟烟气组成为0.1%NO、0.2%CH4、1%O2、0.02%SO2、5%H2O,气体总流量为200 mL·min−1,其余气体由N2配平,反应的体积空速GHSV为16 000 h−1。实验开始之前,首先在N2氛围、300 ℃条件下对催化剂样品进行30 min的预处理,去除催化剂样品表面吸附的水蒸气和其他气体;待反应器与样品冷却至室温后,开始进行CH4-SCR反应实验,温度为200~600 ℃,各个温度稳定20 min后记录数据,反应器升温速率为5 ℃·min−1。反应后的NO、NO2、NOx通过烟气分析仪在线检测,CH4由气相色谱仪(GC-4000A)KB-Al2O3/Na2SO4毛细管柱氢火焰电离检测器(FID)检测,温度稳定后进行采样,每5 min采样1次。
NO转化率、CH4转化率、N2选择性计算方法见式(1)~式(3)。
式中:RNO为NO转化率;
RCH4 为CH4转化率;SN2 为N2选择性;cNOi为进口NO浓度;cNOo为出口NO浓度;cCH4i 为进口CH4浓度;cCH4o 为出口CH4浓度;cNO2o 为出口NO2浓度;cN2Oo 为出口N2O浓度。 -
催化剂的基础物理化学性质分别采用XRD、N2吸附-脱附、XPS、UV-vis、H2-TPR、Py-FTIR等进行表征。
使用18 kW转靶X射线衍射仪(D/max-2550VB+)进行催化剂物相表征,采用Cu Kα作为辐射源,5°~80°测试,扫描速率2 (°)·min−1,操作电压为40 kV,电流为30 mA。
使用全自动比表面积与孔隙度分析仪(ASAP 2460)进行介孔全分析测试,利用BET方法计算催化剂的比表面积,BJH方法计算催化剂脱附孔容、平均孔径以及孔径分布。
使用Thermo Fisher Scientific公司的ESCALAB 250 XI型号仪器测定催化剂的表面元素及其化学状态。
使用SHIMADZU公司的紫外可见近红外光谱仪(UV 3600)测试催化剂的吸收光谱,检测波长为200~800 nm。
H2-TPR在自组装的程序升温装置测试,在立式石英管中装填0.4 g催化剂,使用程序升温炉加热。实验前,300 ℃ N2氛围预处理30 min,冷却至室温,通入5%H2/95%N2的混合气进行催化剂的还原特性测试,升温速率5 ℃·min−1,尾气H2含量通过气相色谱仪热导检测器(TCD)测试,每5 min采样分析。
使用FT-IR Frontier型吡啶红外光谱仪(PE)测定催化剂表面的酸性位(Lewis酸和Brønsted)及含量。保持10−3 Pa的真空度,样品500 ℃预处理1 h。室温吸附吡啶,分别在40、150和300 ℃下进行测试。
-
由图1(a)可知,随着反应温度的增加,Ga2O3-Al2O3催化剂的CH4-SCR反应的NO转化率增大,在550 ℃时达到最大值81%。当反应温度继续升高后,NO转化率有所减小,这是因为高温促进了甲烷的燃烧反应[19],使得甲烷参与选择性还原NO的反应减弱。经铁修饰后的xFe/Ga2O3-Al2O3催化剂在350~500 ℃,CH4-SCR反应的NO转化率均高于Ga2O3-Al2O3催化剂,在500 ℃时NO转化率约为75%。反应温度超过500 ℃后,NO转化率有所下降,但仍保持在65%左右。随着铁含量的增加,NO转化率先增大后减小,如5Fe/Ga2O3-Al2O3的NO转化率高于2Fe/Ga2O3-Al2O3,然而当铁进一步增加后,如10Fe/Ga2O3-Al2O3,NO转化率反而降低。
图1(b)和图1(c)给出了甲烷转化率与N2选择性的结果。随着反应温度的增加,CH4转化率增大。在600 ℃以后,CH4的转化率都达到100%,且xFe/Ga2O3-Al2O3催化剂的CH4转化率都高于Ga2O3-Al2O3催化剂。xFe/Ga2O3-Al2O3催化剂的N2选择性明显高于Ga2O3-Al2O3催化剂,N2选择性随着Fe的加入量得到提高,在450 ℃以后能保证100%的N2选择性。这说明Fe物种的引入,促进甲烷活化与NO反应,并抑制了N2O和NO2的形成,从而提高了N2选择性[28-29]。
-
化石燃料燃烧产生的实际烟气存在一定量的水蒸气与SO2,因此,须考虑水蒸气和SO2对HC-SCR反应的影响。水蒸气与SO2会大大降低Cu-ZSM-5分子筛的催化活性,并且导致结构破坏[30]。前期研究表明,金属铁/氧化铁[31-32]以及铁基催化剂[26]在使用烷烃催化还原NO时具有良好的抗水硫特性,用铁修饰银基催化剂改善了原有银基催化剂的抗水硫特性[27],因此,对xFe/Ga2O3-Al2O3的抗水抗硫特性也需要进行评估。在500 ℃分别进行水蒸气和SO2氛围下脱硝测试,实验结果如图2所示。由图2(a)可知,当反应气体中通入5%的水蒸气后,Ga2O3-Al2O3催化剂的NO转化率出现大幅度下降,降低了20%。这是由于水蒸气与NO或CH4在催化剂同一位置产生竞争吸附,从而影响了NO还原反应的活性位点,不利于NO的吸附物种的形成,也不利于CH4的吸附与活化[19]。当停止水蒸气的加入时,NO转化率即恢复到之前水平,说明水蒸气导致催化剂中毒是可逆的。当用铁进行催化剂修饰后,如5Fe/Ga2O3-Al2O3,在反应气体中通入5%的水蒸气后,NO转化率仅下降10%,仍能保持在60%以上的NO转化效率。切断H2O后,催化剂活性迅速恢复,说明铁的引入提高了催化剂抗水性能。图2(b)反映了引入0.02%SO2前、后Ga2O3-Al2O3与5Fe/Ga2O3-Al2O3的催化效果变化。可以看出,Ga2O3-Al2O3受SO2的抑制较为明显,而5Fe/Ga2O3-Al2O3受SO2的影响较小,在500 ℃引入0.02%SO2,仍能保持70%左右的效率;在切断SO2后,脱硝效率与引入SO2前相比率有略微的下降(<2%)。这说明Fe的引入能够提高了催化剂的抗硫能力。
-
如图3所示,所有样品的衍射峰都非常宽,表明结晶度低,这种较低结晶度是大多数亚稳结构氧化铝的常见特征,同时也是纯的γ-Ga2O3多晶型的共同特征[33]。同时催化剂XRD谱图所示的宽度与低结晶度和高表面积有关[34]。催化剂XRD图谱与γ-Al2O3 (JCPDS#10-425)和γ-Ga2O3 (JCPDS#20-426)标准卡片进行比较,由图3可知,γ-Al2O3的d(400)晶面、d(440)晶面和d(311)晶面对应角度都向低角度偏移。Ga离子的半径为0.062 nm,Al离子对应的半径为0.051 nm,当Ga3+进入氧化铝的晶格中,取代Al3+位置,会使晶胞增大,导致γ-Al2O3特征峰向低角度偏移,说明催化剂均形成了尖晶石结构固溶体γ-Ga2O3-Al2O3[34],这是CH4催化还原NO的重要结构[35]。而加入Fe后,在XRD谱图中并没有观测到Fe2O3或其他形式的铁物质特征衍射峰,这说明铁物种可能高度分散,以无定形态存在,或者进入晶胞形成固溶体。引入过量Fe后,XRD图谱中γ-Ga2O3-Al2O3特征峰强度下降,可能是Fe在催化剂表面发生了团聚,从而影响了γ-Ga2O3-Al2O3结构,这可能是10Fe/Ga2O3-Al2O3的NO转化率下降的原因。
-
由表2可知,Ga2O3-Al2O3的比表面积、孔容和孔径分别为221 m2·g−1、0.582 cm3·g−1、8.2 nm。引入Fe后,2Fe/Ga2O3-Al2O3的比表面积基本无变化,孔容增加至0.643 cm3·g−1,孔径达到9.5 nm。进一步增加铁含量后,5Fe/Ga2O3-Al2O3的比表面积、孔容和孔径分别为213 m2·g−1、0.580 cm3·g−1、9.4 nm。当引入铁含量增加至10%,10Fe/Ga2O3-Al2O3的比表面积、孔容和孔径分别为217 m2·g−1、0.626 cm3·g−1、10.0 nm。说明共沉淀法引入Fe对催化剂比表面积影响小,但可以增大催化剂的孔径,而大孔径有利于降低水蒸气对催化活性的影响。
图4(a)为催化的N2吸附脱附脱附等温曲线,根据2015年IUPAC[36]更新分类可知,xFe/Ga2O3-Al2O3催化剂为Ⅳ(a)型,为介孔类吸附剂材料。在一定的相对压力下,吸附分支与脱附分支发生分离,形成明显的滞回环。合成的样品具有典型的介孔且具有较大孔径。在较低的相对压力区域,曲线向上微微凸起,主要是单分子层吸附作用,当压力足够大时,吸附质发生毛细凝结,使得吸附量急剧增加。随着相对压力进一步增加,吸附曲线趋于平稳,当p/p0接近1时,曲线继续上升,催化剂皆呈现H3型回滞环[37]。对于Ga2O3-Al2O3,在p/p0接近1时,等温吸附脱附曲线的滞后环出现平台,说明吸附已经达到饱和。由图4(a)可知,共沉淀方法引入铁物种,并没有影响到原有的孔隙结构。
由图4(b)可知,Fe的加入使得孔径增大,孔径分布朝更宽的区域分布。这说明Fe可以使催化剂表面孔隙结构变得疏松,从而增加了孔容与孔径。MASUDA等[22]研究发现,小孔径的Ga2O3-Al2O3催化剂在反应中更容易受到水蒸气的影响,而大孔径的催化剂的性能受水蒸气影响更小。引入铁物种后,催化剂的结构特性受影响较小,同时还增大了催化剂的孔径,这可能是其具有较好的抗水特性的原因。
-
图5是 xFe/Ga2O3-Al2O3的XPS谱图。图5(a)为Ga2p的谱图,在1 118 eV和1 145 eV处附近,分别出现2个特征峰,峰间距为27 eV,分别对应于Ga2p3/2和Ga2p1/2自旋轨道,为+3价Ga特征峰,在1 118.7 eV处,Ga物种对应于四面体Ga物种[38]。而在镓铝固溶体结构中,为+3价Ga特征峰,离子会优先占据Al3+的四面体结构,处于四面体位置Ga3+具有更高的甲烷催化还原活性[39]。引入铁后,四面体位置Ga3+仍占主导地位。但引入过多铁后,10Fe/Ga2O3-Al2O3催化剂Ga2p谱图成不对称分布,说明Ga3+存在其他结构,因此,引入过量铁会影响Ga3+在Al3+的四面体位置分布,影响甲烷催化还原活性,这与XRD的分析结论相一致。图5(b)为Fe2p谱图,由Fe2p1/2峰和Fe2p3/2及其相应卫星峰组成,为+3价Fe特征峰[40]。通过分峰处理,Fe2p3/2可由位于711.0 eV附近的
Fe3+A 和713.0 eV左右的Fe3+B 共同组成,前者可对应游离态Fe3+物种,后者对应Fe2O3物种[41-42]。ZHANG等[43]研究发现,富氧条件下Fe2O3颗粒物种的存在促进甲烷参与完全氧化,导致了CH4选择性还原NO的反应减弱。由图5(b)可知,引入铁后,2Fe/Ga2O3-Al2O3催化剂出现Fe3+A 与Fe3+B 2种铁物种。提高引入铁量后,5Fe/Ga2O3-Al2O3催化剂主要以游离态Fe3+A 存在。继续增加铁量,10Fe/Ga2O3-Al2O3催化剂Fe3+B 比例上升。图5(b)显示,5Fe/Ga2O3-Al2O3催化剂具有高含量游离态Fe3+与低含量Fe2O3颗粒,这可能与其具有较好的活性有关,也与图1(a)和图1(b)中10Fe/Ga2O3-Al2O3比5Fe/Ga2O3-Al2O3具有更高的CH4转化率的同时,却具有更低的NO转化率的实验现象相一致。O物种对催化剂的活性具有重要的影响,因此,须对O1s进行分峰研究,探讨表面氧物种的种类与含量。图5(c)是催化剂的O1s XPS图谱,通过曲线拟合分析,可分成3个峰型。最低结合能峰OⅠ(529.3~529.7 eV)为晶格氧的能谱峰,结合能最高峰OⅢ (>533.0 eV)属于羟基与吸附水组成表面氧能谱峰,位于中间的OⅡ(531.5~531.8 eV)可归于催化剂表面吸附和弱结合氧物种[44-45]。在催化反应中,表面弱结合氧物种OⅡ具有高移动性,含量越高,催化活性越高[46]。由表3可知,5Fe/Ga2O3-Al2O3的OⅡ含量高,这与其具有高催化活性有关系。 -
催化剂的化学组成与配位结构可以使用UV-vis光谱进行分析。Ga2O3是一种透明的宽禁带半导体材料,吸收波长<250 nm[47]。根据LI等[48]的研究,将铁的UV-vis吸收光谱分为3个峰,将300 nm以下归于游离态Fe3+,将300~400 nm的峰归属FexOy团聚物种,将400 nm以上的峰归属Fe2O3颗粒。对图6进行分峰处理,2Fe/Ga2O3-Al2O3中游离态Fe3+、FexOy团聚物、Fe2O3颗粒均有分布,且以游离态Fe3+为主要存在形式。进一步增加铁的含量,5Fe/Ga2O3-Al2O3催化剂中游离态Fe3+、FexOy团聚物种与Fe2O3颗粒含量有所增加,且以游离态Fe3+存在;继续增加铁,10Fe/Ga2O3-Al2O3催化剂显示具有更高的Fe2O3含量。研究认为,游离态Fe3+低温能促进甲烷活化成HCHO[43],而HCHO能参与NO还原反应[49],促进了NO转化,而Fe2O3颗粒会催化CH4的完全氧化[50]。因此,5Fe/Ga2O3-Al2O3的催化活性高可能与高含量游离态Fe3+有关,这与XPS中Fe2p的分析结果一致。
-
催化剂还原能力是选择性催化还原的重要参数,通过H2-TPR研究催化剂的还原性能。实验结果如图7所示,Ga2O3-Al2O3仅在550 ℃附近出现了一个较宽还原峰,这归属于Ga3+→Ga+还原[51-52]。引入Fe后,xFe/Ga2O3-Al2O3在350 ℃和500 ℃附近出现2个新的还原峰,这说明引入铁后,增强了催化剂在中高温时的还原能力,从而增强了中高温时的催化活性。根据研究,Fe催化剂的还原分为2步,将350 ℃附近还原峰归属于Fe3+、FexOy、Fe2O3中的Fe3+→Fe2+,500 ℃附近还原峰归属于Fe2+→Fe0还原。通过比较起始还原温度,发现5Fe/Ga2O3-Al2O3的还原峰与2Fe/Ga2O3-Al2O3和10Fe/Ga2O3-Al2O3相比,温度更低,因此,其具有更高的氧化能力和更好的氧移动性[46],这与XPS中O1s分析结果一致,原因可能是5Fe/Ga2O3-Al2O3具有更高催化反应活性。
-
催化剂表面酸性中心一般采取吡啶吸附红外光谱进行分析。吡啶分子可被吸附在催化剂表面,利用在1 640~1 440 cm−1光谱上的差异,可以分析得到Lewis酸部位和Brønsted酸部位。图8为催化剂在室温下吸附饱和后,在40 ℃和300 ℃抽真空后的红外图谱。DATKA等[53]研究表明,波数1 440~1 460 cm−1和1 600~1 635 cm−1为L酸吸收峰,波数1 535~1 550 cm−1为Brønsted酸吸收峰。BARZETTI等[54]研究报道,在1 450 cm−1和1 590~1 620 cm−1的图谱对应Lewis酸,1 490 cm−1 和1 576 cm−1处吸收峰对应于Brønsted酸和Lewis酸。因此,1 445、1 576和1 600 cm−1处对应于Lewis酸,1 490 cm−1处出现的是Brønsted酸和Lewis酸共同峰。
在1 450 cm−1附近形成的L酸中心上出现强吸收峰,说明4组样品主要表现出Lewis酸性特征,催化剂含有少量的Brønsted酸性位,这可能是催化剂表面形成表面羟基,从而形成了B酸性位[55],B酸能够促进NO的氧化,形成重要反应中间体[56]。分别根据峰面积与对应消光系数计算酸量,结果见表4。与Ga2O3-Al2O3相比,xFe/Ga2O3-Al2O3催化剂样品在40 ℃具有更高的Lewis酸酸量,增加铁的引入量,L酸酸量增加,说明铁的引入的确可以促进Lewis的酸量生成。KANTCHEVA等[57]研究发现,CH4可以被Lewis酸吸附活化,并形成能够催化还原的中间体。因此,引入Fe后,催化剂样品会具有更高的甲烷转化率,这与图1(b)中甲烷转化率随引入铁量增加而增加的实验现象相一致。
-
1)采用共沉淀法制备了xFe/Ga2O3-Al2O3催化剂,研究了在富氧条件下的SCR-CH4脱硝特性。经铁修饰后的5Fe/Ga2O3-Al2O3比Ga2O3-Al2O3具有更高的催化活性和更高的N2选择性,在500 ℃、富氧条件下,达到76%的NO转化率和100%的N2选择性,且具有较好的抗烟气中的H2O和SO2的能力。
2)催化剂表征结果显示,加入铁后,引入反应活性物质游离态Fe3+,从而促进了甲烷活化。而当引入过量的Fe时,催化剂表面产生大量Fe2O3颗粒物,从而影响了CH4还原NO反应。共沉淀方法引入铁物种,在不影响原有孔隙结构的同时,提高了催化剂表面的Lewis酸量和氧化还原性能。因此,Fe修饰Ga2O3-Al2O3是提高Ga2O3-Al2O3催化剂的SCR-CH4脱硝性能的有效方法。
Fe/Ga2O3-Al2O3催化甲烷还原NO的性能
Performance of Fe/Ga2O3-Al2O3 catalysts on methane selective catalysis and NO reduction
-
摘要: 以甲烷为还原剂的选择性催化脱硝技术(SCR-CH4)是一种很有潜力的新的脱硝方法,但催化剂的催化活性比较低。为了提高催化剂的活性以及抗水能力,可使用Fe对Al2O3负载的Ga2O3催化剂进行改性。采用共沉淀法,制备了xFe/Ga2O3-Al2O3催化剂,在固定床反应器中测试其选择性催化CH4还原NO的性能。使用XRD、N2吸附脱附、XPS、H2-TPR、Py-IR等方法进行表征。结果表明:经过Fe改性后的催化剂提高了中高温的催化活性,提高了催化剂的N2选择性,并改善了催化剂的抗水特性;5Fe/Ga2O3-Al2O3催化剂在500 ℃、富氧条件下,达到76%的NO转化率和100%的N2选择性;在5%水蒸气条件下,5Fe/Ga2O3-Al2O3在500 ℃仍保持60%以上的NO转化率。N2吸附脱附结果显示,引入Fe后,催化剂保持了原有比表面积,并且大大增加了催化剂孔径,可提高催化剂抗水能力。XPS与UV-vis显示,5Fe/Ga2O3-Al2O3具有高含量的游离态Fe3+,可提高催化剂的中高温活性。H2-TPR结果显示,Fe的引入提高了催化剂氧化还原能力,增强了原有Ga2O3-Al2O3中高温的还原活性。Py-FT-IR结果显示,催化剂表面同时存在Lewis酸和Brønsted酸,铁的引入增加了催化剂表面的Lewis酸量。因此,Fe修饰Ga2O3-Al2O3是提高Ga2O3-Al2O3催化剂的SCR-CH4脱硝性能的有效方法。
-
关键词:
- 选择性催化还原 /
- NO /
- CH4 /
- Fe/Ga2O3-Al2O3催化剂
Abstract: The selective catalytic denitration with methane reductant (SCR-CH4) is a very promising alternative method, however, the current reported catalysts showed low catalytic reactivity for SCR-CH4. In order to improve the catalytic reactivity and the water resistance of the catalysts, Fe was used to modify the Ga2O3 catalysts supported on Al2O3. The xFe/Ga2O3-Al2O3 catalysts were prepared by co-precipitation method, and their catalytic performance on methane selective catalysis and NO reduction was tested in a fixed bed reactor. XRD, N2 adsorption desorption, XPS, H2-TPR, Py-IR, etc were used to characterize the xFe/Ga2O3-Al2O3 catalysts. The results showed that the catalysts modified by Fe improved the catalytic activity at medium and high temperature, their N2 selectivity, and their tolerance for water presented in the feed gas. At 500 ℃ and oxygen-rich conditions, the 5Fe/Ga2O3-Al2O3 catalyst could achieve 76% NO conversation and 100% N2 selectivity. Under 5% water vapor conditions, 5Fe/Ga2O3-Al2O3 still maintained over 60% NO conversation at 500 ℃. The results of N2 adsorption and desorption showed that the original specific surface area was maintained for the Fe-doped catalysts, and their pore size increased significantly, which improved their water-resistance ability. XPS and UV-vis detection showed that 5Fe/Ga2O3-Al2O3 had a high content of free Fe3+, which contributed to the medium-high temperature activity. The H2-TPR results showed that the introduction of Fe elevated the redox capacity of the catalysts and enhanced the medium-high temperature reduction activity of the original Ga2O3-Al2O3. Py-FT-IR results showed that both Lewis acid and Brønsted acid existed on the surface of the catalysts, and the introduction of Fe raised the content of the Lewis acid. Therefore, Fe modification of Ga2O3-Al2O3 is an effective method to improve the performance of SCR-CH4 of Ga2O3-Al2O3.-
Key words:
- selective catalytic reduction /
- NO /
- CH4 /
- Fe/Ga2O3-Al2O3 catalyst
-
进入环境中的重金属具有高毒性、持久性、不可生物降解性和生物累积性等的特点,不仅会威胁生态系统的安全,而且还可以通过食物链危及人群的身体健康[1-4]。底泥是重金属的重要载体。随着全球城镇化和工业化进程的加快,大量的重金属排入湖泊、水库和河流等地表水体,最终汇集到底泥中,造成水体底泥的重金属污染[1-4]。当外界环境条件合适时,底泥中累积的重金属会释放出来进入上覆水体中,成为水体重金属污染的内源,对水体造成二次污染[3-4]。目前,水体底泥的重金属污染已成为世界范围内的一个重要环境问题[5-6]。因此,控制水体污染底泥中重金属的释放刻不容缓。
水体底泥重金属释放控制技术可分为两大类:异位和原位控制技术[5-7]。原位覆盖/改良技术,即将修复材料覆盖到底泥-水界面上方或直接添加进底泥中,被认为是一种极具应用前景的水体底泥重金属释放控制技术[5-7]。该技术具有运行简单、修复成本低、修复速度快和环境友好等的优点[5-7]。选择合适的修复材料,对于利用原位覆盖/改良技术控制底泥中重金属释放而言是非常重要的。目前,许多重金属污染底泥的修复材料已引起了人们的关注,包括磷灰石[8]、生物炭[9]、碳纳米管[10]、零价铁[10]、沸石[11]和铁氧化物[12]等。
铜(Cu)和铅(Pb)是两种底泥中广泛存在的重金属。沸石是一种含水的碱或碱土金属铝硅酸盐矿物,不仅来源广泛、价格低廉,而且对水中Cu2+和Pb2+等重金属阳离子的吸附性能较好[13-14]。Xiong等研究发现,2 cm厚天然沸石覆盖层对底泥中Pb释放的抑制率可达85.7%[11]。方解石是一种分布很广的碳酸钙矿物。研究发现,方解石对水中Cu2+和Pb2+等重金属阳离子的去除性能较好[15-17]。另外,最近的研究发现,采用铁盐对方解石进行改性所获得的铁改性方解石(铁方解石)是一种非常有应用前景的用于控制水体底泥磷释放的活性覆盖材料[18]。考虑到铁氧化物对水中Cu2+和Pb2+等重金属阳离子具有较好的吸附能力[19-20],因此天然沸石和铁方解石的联合覆盖预计也可用于水体底泥中Cu和Pb等重金属释放的控制。但是,目前对天然沸石和铁方解石联合覆盖控制水体底泥Cu和Pb释放效果及机制的了解尚不十分清楚。
为此,本研究分析了天然沸石和铁方解石对水中Cu2+和Pb2+的吸附特性,考察了天然沸石和铁方解石联合覆盖对上覆水中Cu和Pb浓度动态变化的影响,辨析了联合覆盖对上覆水-底泥垂向剖面上有效态Cu和Pb分布特征的影响,观察了联合覆盖对底泥-水界面Cu和Pb扩散通量的影响,分析了被联合覆盖层所吸附Cu和Pb的赋存形态,探讨了天然沸石和铁方解石联合覆盖对底泥中Cu和Pb释放的控制机制,以期为联合利用天然沸石和铁方解石作为覆盖材料控制水体底泥中重金属释放提供科技支撑。
1. 材料与方法(Materials and methods)
1.1 材料
底泥取自上海市浦东新区上海海洋大学校园景观水体,自然风干并过100 目筛。氯化铁、硝酸铅、硝酸铜、硝酸、乙酸、盐酸羟胺、过氧化氢、乙酸、乙酸铵、氢氧化钠和盐酸等化学药剂均购自国药集团化学试剂有限公司,均为分析纯。天然沸石(NZ)来自浙江省缙云县某矿山。方解石(CA)来自浙江省长兴县某矿山。Chelex DGT(薄膜扩散梯度)装置由南京智感环境科技有限公司提供。实验所用的水为去离子水。分别采用Cu(NO3)2·3H2O和Pb(NO3)2配制硝酸铜和硝酸铅的储备液,再通过稀释的方式获得硝酸铜和硝酸铅的使用液。使用液中铜和铅的浓度均以元素铜和铅计。
1.2 实验方法
1.2.1 铁方解石的合成
铁方解石(FeCA)的制备步骤为:称取20 g 过200 目筛的方解石粉末放入到500 mL 锥形瓶中,然后再向该锥形瓶中加入5 g FeCl3·6H2O,随后再向该锥形瓶中加入100 mL 去离子水并摇匀;接着,将该锥形瓶放置到磁力搅拌器上,再用1 mol·L−1氢氧化钠溶液以稳定的速度滴入到锥形瓶中,将悬浮液的pH值调节至10,然后继续搅拌反应1 h;随后采用离心分离的方式获得固体材料,再采用去离子水清洗材料5遍;再将所获得的固体材料放入到105℃的烘箱中进行烘干,烘干后将材料研磨收集即得到FeCA,并用自封袋密封备用。
1.2.2 重金属污染底泥的制备
称取2 kg的风干底泥置于容器中;分别称取4.53 g Cu(NO3)2·3H2O(等同于向底泥中添加600 mg·kg−1的Cu)和3.20 g Pb(NO3)2(等同于向底泥中添加1000 mg·kg−1的Pb)置于同一个烧杯中,再加入500 mL去离子水,配成含硝酸铜和硝酸铅的混合溶液;然后将该混合溶液倒入到含有风干底泥的容器中并加以搅拌,接着分2次加入 500 mL去离子水;再手动搅拌40 min,然后静置过夜,制备得到重金属污染底泥。
1.2.3 铜吸附实验
通过批量吸附实验研究溶液初始浓度对NZ和FeCA去除水中Cu2+的影响。实验步骤为:将25 mg NZ或FeCA加入到50 mL玻璃瓶中,再加入25 mL硝酸铜溶液,溶液的初始pH值设置为6,再将锥形瓶放置于水浴振荡器中恒温振荡24 h,温度设为25 ℃,转数为250 r·min−1;反应结束后离心分离获得上清液,再用原子火焰法测定上清液中铜的浓度。对于NZ吸附铜离子实验,初始浓度分别为5、10、15、20、25、30 mg·L−1。对于FeCA吸附水中铜离子实验,初始浓度分别为5、10、15、20、25、30、35、40、50 mg·L−1。
通过批量吸附实验考察吸附剂投加量对NZ吸附水中Cu2+的影响。实验步骤为:分别称取质量为15、20、25、30、40、50、60 mg的NZ置于一系列的100 mL锥形瓶中,再加入pH值为6、浓度为10 mg·L−1的硝酸铜溶液50 mL,再置于水浴振荡器中振荡反应24 h;反应时间结束后,通过离心分离的方式获取上清液;然后采用原子火焰法测定上清液中残留的铜浓度。对于吸附剂投加量对FeCA去除水中铜离子的影响实验,吸附剂质量分别为15、20、25、30、40、50、60 mg,初始浓度为20 mg·L−1,实验步骤同上。
1.2.4 铅吸附实验
通过批量吸附实验考察初始浓度对NZ和FeCA吸附水中Pb2+的影响。对于NZ的吸附实验,溶液体积为25 mL,吸附剂投加量为25 mg,溶液pH值为6,初始Pb浓度分别为75、100、125、150、200 mg·L−1,反应时间为24 h。对于FeCA的吸附实验,溶液体积为100 mL,吸附剂投加量为10 mg,溶液初始pH值为6,初始Pb浓度分别为10、20、40、60、80、100、150、200 mg·L−1,反应时间为24 h。
通过批量吸附实验考察吸附剂投加量对NZ和FeCA吸附水中Pb2+的影响。对于NZ的吸附实验,溶液体积为50 mL,初始Pb浓度为10 mg·L−1,初始pH值为6,吸附剂投加量分别为15、20、25、30、40、50、60 mg,反应时间为24 h。对于FeCA的吸附实验,溶液体积为50 mL,初始Pb浓度为20 mg·L−1,初始pH值为6,吸附剂投加量分别为15、20、25、30、40、50、60 mg,反应时间为24 h。
NZ和FeCA对水中Cu(II)和Pb(II)的单位吸附量(Qe,mg·g−1)和去除率(RE,%)分别采用公式(1)和(2)进行计算。
Qe=(C0−Ce)×VM (1) RE=C0−CeC0×100% (2) 式中,C0和Ce分别代表初始时刻和平衡时刻水中Cu(Ⅱ)或Pb(Ⅱ)的浓度(mg·L−1);V代表Cu(Ⅱ)或Pb(Ⅱ)溶液的体积(L);M代表NZ或FeCA的投加量(g)。
1.2.5 底泥培养实验
称取634 g 湿的重金属污染底泥置于1.3 L玻璃瓶中,并对玻璃瓶中底泥进行以下处理:① 底泥不进行任何处理(对照组);② 将20 g NZ覆盖于底泥-水界面上方,并铺设均匀(沸石覆盖组);③ 将20 g FeCA均匀铺设到底泥-水界面上方(铁方解石覆盖组);④ 先将20 g NZ覆盖到底泥-水界面上方,再将20 g FeCA均匀铺设到沸石覆盖层上方(联合覆盖组)。配制含10 mmol·L−1 NaCl、1 mmol·L−1 NaHCO3和1 mmol·L−1 CaCl2的溶液,并将其pH值调节至7.5,然后采用亚硫酸钠氧化法去除溶液中的溶解氧(DO),使 DO浓度低于 0.5 mg·L−1。将配制好的溶液加入到玻璃瓶中,直至上覆水位到达玻璃瓶的瓶口,然后塞上橡胶塞,并用白凡士林涂抹封口,营造底泥处于缺氧状态的环境。每间隔一段时间采用便携式溶氧仪测定上覆水中DO 浓度,并采用原子吸收法测定上覆水中Cu和Pb的浓度。培养339 d之后,插入Chelex DGT测定上覆水和底泥中DGT有效态Cu和Pb的浓度。
DGT膜中积累的Cu或Pb的质量(m,mg)根据公式(3)进行计算[21]。
m=Cl×(Vgel+Vacid)fe (3) 式中,Cl为HNO3提取液中Cu或Pb的浓度(mg·L−1);Vgel是DGT凝胶的体积(L);Vacid为HNO3提取液的体积(L);fe为Cu或Pb的提取率。
DGT有效态Cu或Pb浓度(CDGT,mg·L−1)根据公式(4)进行计算[21]。
CDGT=m×ΔgDd×A×T (4) 式中,∆g为扩散层和滤膜的厚度(cm);Dd为Cu或Pb的扩散系数(cm2·s−1);A为DGT膜暴露面积(cm2);T为DGT放置时间(d)。
底泥-水界面Cu或Pb的表面扩散速率[J,µg·(m2·d)−1]采用以下公式进行计算[22]:
J=−Dw(∂CDGT∂xw)(x=0)−ϕDs(∂CDGT∂xs)(x=0) (5) 式中,Dw为Cu或Pb在水中的扩散系数(cm2·s−1);Ds为Cu或Pb在底泥中的扩散系数(cm2·s−1);
和(∂CDGT∂xw)(x=0) 分别为Cu或Pb在水相和底泥相中的浓度梯度[µg·(L·mm)−1]。Ds可根据以下公式进行计算[22]:(∂CDGT∂xs)(x=0) Ds=ϕ2DW (6) 底泥培养实验结束之后,收集覆盖材料,并采用改进的BCR连续提取法[4]对覆盖材料中Cu和Pb的赋存形态进行分析。该方法将重金属的形态定义为可交换态(F1)、可还原态(F2)、可氧化态(F3)和残渣态(F4)4种形态。取0.5 g覆盖材料置于50 mL离心管中,然后分别采用不同的提取剂对覆盖材料中各形态Cu和Pb进行分级提取,再采用原子吸收法测定提取液中各形态Cu和Pb的含量。另外,本研究也采用改进的BCR连续提取法[4]对底泥中Cu和Pb的赋存形态进行分析。
2. 结果与讨论(Results and discussion)
2.1 NZ和FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的吸附特性
图1是吸附剂投加量对NZ和FeCA去除水中Cu(Ⅱ)和Pb(Ⅱ)的影响。从图1可见,吸附剂投加量由0.3 g·L−1逐渐增加到1.2 g·L−1时,NZ对水中Cu(Ⅱ)的去除率由25.2%增加到67.0%,而NZ对水中Cu(Ⅱ)的单位吸附量则由8.39 mg·g−1逐渐下降到5.58 mg·g−1。当吸附剂投加量由0.3 g·L−1逐渐增加到1.2 g·L−1时,FeCA对水中Cu(Ⅱ)的去除率逐渐从43.0%增加到97.2%,这与吸附剂投加量影响NZ对水中Cu(Ⅱ)去除率的规律类似。与NZ略微不同的是,随着吸附剂投加量由0.3 g·L−1逐渐增加到1.2 g·L−1时,FeCA对水中Cu(Ⅱ)吸附量先略微增加(当吸附剂投加量从0.3 g·L−1增加到0.4 g·L−1时,吸附量从28.7 mg·g−1增加到31.5 mg·g−1)而后持续下降(当吸附剂投加量从0.4 g·L−1增加到1.2 g·L−1时,吸附量从31.5 mg·g−1下降到16.2 mg·g−1)。NZ和FeCA对水中Cu(Ⅱ)去除率随着吸附剂投加量增加而增加的原因主要是:吸附剂投加量越大,提供的吸附剂活性点位越多,更有利于水中的Cu2+被吸附剂所吸附去除[23]。NZ和FeCA对水中Cu(Ⅱ)单位吸附量随着吸附剂投加量增加而降低的原因主要是:吸附剂投加量的增加导致了吸附剂表面上活性位点的聚集以及吸附质扩散路径长度的增加[23]。从图1中还可见,当吸附剂投加量由0.3 g·L−1增加到1.2 g·L−1时,NZ和FeCA对水中Pb(Ⅱ)的去除率基本保持不变,分别位于98.6%—99.7%和99.7%—99.9%。此外,当吸附剂投加量由0.3 g·L−1增加到1.2 g·L−1时,NZ和FeCA对水中Pb(Ⅱ)的单位吸附量则会逐渐下降,分别由33.0 mg·g−1下降到8.30 mg·g−1和由66.6 mg·g−1下降到16.6 mg·g−1。由以上分析可见,NZ和FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)均具有较强的吸附去除能力。
图2为NZ和FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的吸附等温线。由图2可见,NZ和FeCA对水中Cu(Ⅱ)的单位吸附量随着吸附平衡浓度的增加而增加,直至达到吸附饱和或者接近饱和。随着水中Pb(Ⅱ)平衡浓度的逐渐增加,NZ和FeCA对Pb(Ⅱ)的单位吸附量逐渐增加直至达到吸附饱和或者接近饱和。进一步采用Langmuir [式(7)][24]和Freundlich [式(8)][24]等温吸附模型对图2中的实验数据进行拟合分析,所获得模型参数值列于表1。根据模型参数值计算得到的Langmuir和Freundlich等温线也列于图2。
表 1 天然沸石和铁方解石吸附水中Cu(Ⅱ)和Pb(Ⅱ)的等温线模型参数拟合结果Table 1. Fitting results of isotherm models for Cu(Ⅱ) and Pb(Ⅱ) uptake by natural zeolite and iron-modified calcite等温吸附模型Isotherm model 参数Parameter 天然沸石Natural zeolite 铁方解石Iron-modified calcite Cu(Ⅱ) Pb(Ⅱ) Cu(Ⅱ) Pb(Ⅱ) Langmuir QMAX/(mg·g−1) 7.98 75.4 27.2 1150 KL/(L·mg−1) 4.29 0.252 17.4 9.29 R2 0.685 0.515 0.983 0.722 Freundlich KF 5.40 43.8 20.3 685 1/n 0.153 0.114 0.132 0.119 R2 0.968 0.741 0.770 0.454 Langmuir:Qe=QMAXKLCe1+KLCe (7) Freundlich:Qe=KFC1/ne (8) 式中,Qe代表吸附剂对水中吸附质的吸附量(mg·g−1);Ce代表水中残留的吸附质浓度;QMax代表吸附剂对水中吸附质的最大单分子层吸附量(mg·g−1);KL代表Langmuir常数(L·mg−1);KF和1/n均代表Freundlich常数。
从表1中可见,与Langmuir模型相比,NZ对水中Cu(Ⅱ)和Pb(Ⅱ)的等温吸附行为更适合采用Freundlich模型加以描述。与之相反的是,FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的等温吸附行为则更适合采用Langmuir模型加以描述,说明FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的吸附属于单分子层吸附。根据Langmuir等温吸附模型,NZ对水中Cu(Ⅱ)和Pb(Ⅱ)的最大单分子层吸附量分别为7.98 mg·g−1和75.4 mg·g−1,接近根据实验确定的最大吸附量(Cu:8.69 mg·g−1;Pb:75.7 mg·g−1)。FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的最大单分子层吸附量分别为27.2 mg·g−1和1150 mg·g−1,接近根据实验确定的最大吸附量(Cu:28.4 mg·g−1;Pb:1099 mg·g−1)。这说明,采用Langmuir等温吸附模型预测NZ和FeCA对水中Pb和Cu的最大吸附量是可靠的。很显然,FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的最大单分子层吸附量高于NZ。这进一步说明了FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的吸附能力强于NZ。
表2为国内外先前文献报道的沸石、碳酸盐基材料和铁氧化物对水中Cu(Ⅱ)和Pb(Ⅱ)的最大单位吸附量。从表2中可见,本研究所用的天然沸石对水中Cu(Ⅱ)的最大吸附量(7.98 mg·g−1)小于先前文献报道的天然沸石(26.24 mg·g−1),也小于先前文献报道的人工合成沸石(57.803—202.76 mg·g−1)。另外,本研究所用的天然沸石对水中Pb(Ⅱ)的最大吸附量(75.4 mg·g−1)介于先前文献报道的天然沸石的最大吸附量(14.2—89.096 mg·g−1)之间,但小于先前文献报道的人工合成沸石最大吸附量(109.890—441.336 mg·g−1)。虽然天然沸石对水中Cu(Ⅱ)和Pb(Ⅱ)的最大吸附量小于人工合成沸石,但是前者的成本通常是小于后者的。因此,从性价比的角度看,应用天然沸石作为覆盖材料控制底泥中Cu和Pb的释放预计是更有希望的。虽然铁方解石对水中Cu(Ⅱ)的最大吸附量小于先前文献报道的碳酸盐基材料(大理石),也小于人工合成的沸石,但是铁方解石对水中Pb(Ⅱ)的最大吸附量明显大于先前文献报道的天然沸石、人工合成沸石和碳酸盐基材料(碳酸盐基尾矿渣和球霰石型碳酸钙)。所以,从吸附容量的角度看,利用铁方解石作为覆盖材料控制底泥中Pb的释放是很有希望的。
表 2 国内外沸石、碳酸盐基材料和铁氧化物对水中Cu(Ⅱ)和Pb(Ⅱ)的最大吸附量Table 2. The maximum Cu(Ⅱ) and Pb(Ⅱ) uptake capacities for zeolite, carbonate-based material and iron oxide reported in previous literatures序号Number 吸附剂名称Adsorbent name Cu(Ⅱ)最大吸附量/(mg·g−1)Copper maximum adsorption capacity Pb(Ⅱ)最大吸附量/(mg·g−1)Lead maximum adsorption capacity 确定方法Determination method 参考文献Reference 1 天然沸石 — 14.2 Langmuir模型 [13] 2 天然沸石 26.24(0.410 mmol·g−1) 89.096(0.430 mmol·g−1) Langmuir-Freundlich模型 [14] 3 FAU型沸石 57.803 109.890 Langmuir模型 [25] 4 NaA型沸石 202.76 — Langmuir模型 [26] 5 NaY型沸石 — 431.60 Langmuir模型 [27] 6 钙霞石型沸石 133.18 (2.081 mmol·g−1) 441.336 (2.130 mmol·g−1) Langmuir模型 [28] 7 碳酸盐基尾矿渣 — 832 实验 [29] 8 大理石 222.84 — Langmuir模型 [30] 9 球霰石型碳酸钙 — 499.86 实验 [31] 10 NZ 7.98 75.4 Langmuir模型 本研究 11 FeCA 27.2 1150 Langmuir模型 本研究 先前研究[23,32-33]已对沸石吸附水中Cu2+和Pb2+等重金属阳离子的机制开展了研究,结果发现,阳离子交换和静电吸引是沸石吸附水中Cu2+和Pb2+等重金属阳离子的重要作用机制。因此,笔者推测,本研究所用NZ吸附水中Cu2+和Pb2+的主要机制涉及阳离子交换和静电吸引。Tang等研究发现,方解石溶解和含铜沉淀物形成是方解石去除水中Cu2+的重要机制[34]。Song等研究发现,方解石去除水中Cu2+的机制主要为表面吸附和化学沉淀作用[35]。内层配合物形成是铁氧化物吸附水中Cu2+和Pb2+的重要机制[36]。所以,笔者推测,铁方解石去除水中Cu2+和Pb2+的主要机制涉及表面吸附和化学沉淀。
2.2 NZ和FeCA联合覆盖对上覆水中Cu(Ⅱ)和Pb(Ⅱ)浓度的影响
本研究所用底泥中可交换态、可还原态、可氧化态和残渣态Cu的含量分别为43.5、10.2、381 mg·kg−1和196 mg·kg−1,可交换态、可还原态、可氧化态和残渣态Pb的含量分别为209、326、86.9、592 mg·kg−1。在采用BCR法提取的4种形态重金属中,可交换态重金属被认为是最容易释放和最具生物有效性的[4]。可还原态重金属主要是指与铁锰氧化物/氢氧化物所结合的重金属,在缺氧条件下容易被释放出来[4]。本研究所用底泥中F1+F2态Cu和Pb含量分别为53.7 mg·kg−1和535 mg·kg−1。这说明本研究所用底泥中Cu和Pb存在释放的风险。底泥培养期间对照组、NZ覆盖组、FeCA覆盖组和联合覆盖组上覆水中DO浓度的最大值分别为0.65、0.17、0.79、0.25 mg·L−1。这说明,底泥培养期间各反应器中上覆水均处于缺氧状态。图3为对照组、NZ覆盖组、FeCA覆盖组和联合覆盖组上覆水中Cu浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Cu的去除率。从中可见,对照组上覆水中Cu浓度位于0.223—0.447 mg·L−1。这说明缺氧条件下底泥中Cu会释放出来进入上覆水中。NZ覆盖组上覆水中Cu浓度为0.105—0.236 mg·L−1,低于对照组。计算得到的NZ覆盖对上覆水中Cu的削减率为37%—66%。这表明,天然沸石覆盖可以有效降低底泥中Cu向上覆水体中的释放。通常,底泥中物质向上覆水体释放的过程包括两个基本过程:(1)底泥中物质先释放进入间隙水中;(2)间隙水中溶解态物质通过分子扩散机制穿过底泥-水界面向上覆水迁移[37-38]。天然沸石对水中Cu2+具有较好的吸附能力(图1和图2)。底泥间隙水中Cu2+穿越底泥-水界面时可被天然沸石覆盖层所吸附,进而导致底泥-水界面Cu扩散通量的下降,从而导致上覆水中Cu浓度的下降。从图3中还可见,FeCA覆盖组上覆水中Cu的浓度为0.044—0.066 mg·L−1,低于对照组。计算得到的FeCA覆盖对上覆水中Cu的削减率为80%—86%。这说明,铁方解石覆盖可有效降低底泥中Cu向上覆水体中的释放风险。铁方解石对水中Cu具有较好的吸附能力(图1和图2)。铁方解石覆盖层可通过吸附作用拦截底泥间隙水中Cu向上覆水体的扩散,从而降低上覆水中Cu的浓度。铁方解石覆盖对上覆水中Cu的削减率高于天然沸石。这说明铁方解石覆盖控制底泥中Cu释放的效果优于天然沸石。联合覆盖组上覆水中Cu的浓度明显低于对照组,天然沸石和铁方解石联合覆盖对上覆水中Cu的削减率为81%—89%。由此可见,天然沸石和铁方解石联合覆盖同样可以有效控制底泥中Cu向上覆水体中的释放。这主要归功于联合覆盖层中天然沸石和铁方解石对底泥中Cu释放的拦截作用。另外,NZ/FeCA联合覆盖对底泥中Cu向上覆水体中释放的效率要高于单独的NZ覆盖。
图 3 各实验组上覆水中Cu浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Cu的去除率Figure 3. Change in Cu concentration of overlying water in control, natural zeolite (NZ) capping, iron-modified calcite (FeCA) capping, and NZ/FeCA combined capping columns and the reduction efficiencies of overlying water Cu by the NZ capping, FeCA capping and NZ/FeCA combined capping图4为各实验组上覆水中Pb浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Pb的去除率。
图 4 各实验组上覆水中Pb浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Pb的去除率Figure 4. Change in Pb concentration of overlying water in control, natural zeolite (NZ) capping, iron-modified calcite (FeCA) capping, and NZ/FeCA combined capping columns and the reduction efficiencies of overlying water Pb by the NZ capping, FeCA capping and NZ/FeCA combined capping从图4中还可见,对照组上覆水中Pb的浓度为0.220—0.303 mg·L−1,说明底泥中Pb可被释放出来进入上覆水中。与对照组相比,NZ覆盖组和FeCA覆盖组上覆水中Pb的浓度更低。NZ覆盖和FeCA覆盖对上覆水中Pb的削减率分别为45.5%—75.0%和63.6%—81.3%。显然,前者对上覆水中Pb的削减率低于后者。这说明NZ覆盖和FeCA覆盖均可有效控制底泥中Pb向上覆水体中的释放,且后者控制底泥中Pb向上覆水体中释放的效果优于前者。NZ对水中Pb2+具有一定的吸附能力,而FeCA对水中Pb2+的吸附能力强(图1和2)。NZ覆盖和FeCA覆盖之所以能有效控制底泥中Pb释放的主要原因之一是:NZ或FeCA覆盖层会吸附底泥间隙水中溶解态Pb,从而阻止了底泥间隙水中溶解态Pb向上覆水体中的扩散。从图4还可见,NZ和FeCA联合覆盖层同样可以有效地阻止底泥中Pb向上覆水体中的释放,导致上覆水中Pb的浓度明显低于对照组。NZ/FeCA联合覆盖层对上覆水中Pb2+的削减率为68.2%—87.5%。这主要归功于联合覆盖层中NZ和FeCA对底泥中Pb释放的拦截作用。另外,NZ/FeCA联合覆盖控制底泥中Pb向上覆水体中释放的效率要高于单独的NZ覆盖。
2.3 NZ和FeCA联合覆盖对上覆水-底泥垂向剖面上有效态Cu和Pb分布特征的影响
图5是对照组和联合覆盖组上覆水-底泥垂向剖面上DGT有效态Cu和Pb的分布特征。从中可见,对照组中底泥-水界面附近DGT有效态Cu和Pb浓度呈现显著的梯度变化。当深度从20 mm下降到0 mm时(正值表示底泥-水界面上方),上覆水中DGT有效态Cu和Pb浓度分别从1.20 µg·L−1增加到2.72 µg·L−1和从1.55 µg·L−1增加到3.48 µg·L−1。当深度从0 mm下降到-40 mm(负号表示底泥-水界面下方)时,底泥中DGT有效态Cu和Pb浓度分别由2.72 µg·L−1急剧增加到12.7 µg·L−1和由3.48 µg·L−1急剧增加到18.6 µg·L−1。这证实了本研究所用底泥中Cu和Pb会逐渐从下层底泥向上层底泥迁移,而后穿越底泥-水界面再向上覆水体中释放。对于联合覆盖组而言,不同深度处上覆水中DGT有效态Cu和Pb的浓度水平差异很小,但是不同深度处底泥中DGT有效态Cu和Pb的浓度仍存在的差异。当深度从−30 mm下降到−40 mm时,底泥中DGT有效态Cu浓度会由1.49 µg·L−1增加到4.31 µg·L−1。当深度从0 mm下降到−40 mm时,底泥中DGT有效态Pb浓度会从0.219 µg·L−1增加到8.95 µg·L−1。这说明,NZ和FeCA联合覆盖作用下底泥中Cu和Pb仍存在向间隙水和上覆水中释放的风险。
从图5中还可以看出,联合覆盖组上覆水中DGT有效态Cu和Pb浓度明显低于对照组。计算确定的联合覆盖对上覆水中DGT有效态Cu和Pb的削减率分别为54.3%—78.5%和84.1%—93.7%。这说明NZ和FeCA联合覆盖可有效降低底泥中Cu和Pb向上覆水体中释放的风险。
与对照组相比,联合覆盖组底泥中DGT有效态Cu和Pb浓度明显低。产生这种现象的原因推测是:利用DGT对底泥中有效态金属的测量结果不仅体现了间隙水中溶解态金属的浓度,而且体现了底泥中弱吸附态金属向液相的补给能力[39];在联合覆盖作用下,NZ和FeCA会吸附间隙水中溶解态Cu和Pb,可导致间隙水中溶解态Cu和Pb浓度的降低;当间隙水中溶解态Cu和Pb浓度下降后,底泥表面弱吸附态Cu和Pb会释放出来,以弥补间隙水中损失的溶解性Cu和Pb;NZ和FeCA对间隙水中Cu和Pb的吸附速率预计会大于底泥向间隙水的补充速率,从而导致联合覆盖作用下底泥中DGT有效态Cu和Pb浓度明显低于无覆盖条件下的浓度。计算确定的联合覆盖对底泥中有效态Cu和Pb的削减率分别为69.3%—81.2%和51.9%—91.7%。这说明,NZ和FeCA联合覆盖可以有效降低底泥中Cu和Pb向间隙水中释放的风险。
间隙水和上覆水之间溶解态物质浓度差大小是影响间隙水中溶解性物质向上覆水中扩散的重要因素。联合覆盖作用下底泥中DGT有效态Cu和Pb浓度的下降,导致了底泥中Cu和Pb向间隙水中释放风险的降低,进而可降低底泥间隙水中Cu和Pb的浓度,从而可降低间隙水和上覆水之间Cu和Pb的浓度差,最终导致了联合覆盖组上覆水中Cu和Pb浓度明显低于对照组。由此可见,NZ和FeCA联合覆盖层对底泥中DGT有效态Cu和Pb的削减作用,对于其控制底泥中Cu和Pb向上覆水体中释放而言是至关重要的。
根据公式(5)和(6),利用图5中的实验数据,计算得到对照组底泥-水界面Cu和Pb的扩散速率分别为11.3 µg·(m2·d)−1和35.9 µg·(m2·d)−1,而联合覆盖组底泥-水界面Cu和Pb的扩散速率分别为1.17 µg·(m2·d)−1和2.92 µg·(m2·d)−1。这说明,无覆盖条件下底泥中Cu和Pb可通过分子扩散机制穿越底泥-水界面进入上覆水中,并且联合覆盖条件下底泥中的Cu和Pb也可通过分子扩散机制穿越底泥-水界面进入上覆水中,分子扩散是无覆盖和联合覆盖作用下底泥中Cu和Pb向上覆水体中释放的重要机制。进一步计算确定,天然沸石和铁方解石联合覆盖对底泥-水界面Cu和Pb扩散速率的削减率分别为89.7%和91.9%。这说明,天然沸石和铁方解石的联合覆盖可有效降低底泥-水界面Cu和Pb的扩散速率。因此,天然沸石和铁方解石的联合覆盖对底泥-水界面Cu和Pb扩散速率的削减,是其控制底泥中Cu和Pb释放进入上覆水体中的重要作用机制。
2.4 被NZ和FeCA联合覆盖层所吸附Cu和Pb的形态分布特征
分析覆盖层中重金属的形态分布特征,进而评估被覆盖层所吸附重金属的稳定性,对于利用活性覆盖技术控制底泥中重金属释放是很重要的。这是因为,如果被覆盖层所吸附的重金属会重新释放的话,那么活性覆盖技术控制底泥中重金属释放的长效性将很难得到保证。因此,分析NZ和FeCA联合覆盖层中Cu和Pb的形态分布特征,进而评估被该联合覆盖层所吸附Cu和Pb的稳定性,是非常必要的。从图6可见,联合覆盖层中各形态Cu含量从大到小依次为:可氧化态Cu(381 mg·kg−1)>残渣态Cu(196 mg·kg−1)>可交换态Cu(43.5 mg·kg−1)>可还原态Cu(10.2 mg·kg−1)。进一步计算确定,联合覆盖层中可氧化态、残渣态、可交换态和可还原态Cu占总可提取态Cu的比例分别为60.4%、31.1%、6.89%和1.62%。从图6中还可以看出,联合覆盖层中各形态Pb含量从大到小依次为残渣态Pb(592 mg·kg−1)>可还原态Pb(326 mg·kg−1)>可交换态Pb(209 mg·kg−1)>可氧化态Pb(86.9 mg·kg−1)。进一步计算确定,联合覆盖层中残渣态、可还原态、可交换态和可氧化态Pb占总可提取Pb的比例分别为48.8%、26.9%、17.2%和7.16%。培养实验结束之后,联合覆盖层中含一定数量的Cu和Pb,这证实了NZ和FeCA对底泥间隙水中溶解性Cu和Pb的吸附作用是联合覆盖层控制底泥中Cu和Pb释放的重要机制。
固体材料中重金属的生物可利用性和迁移能力与其赋存形态是密切相关的[40-42]。F1态金属对外界环境变化非常敏感,在偏酸性和中性条件下通常很容易释放出来[40-42]。F2态金属被认为在水体氧化还原电位降低或缺氧条件下较容易被释放出来[40-42]。F3态金属稳定性较高[42]。在强氧化条件下,F3态金属存在重新释放的可能性[42-43]。F4态金属通常情况下很难被释放出来[42]。联合覆盖层中F1和F2态Cu之和占总可提取态Cu的比例仅为8.51%。这说明被NZ和FeCA所吸附的Cu大部分(91.49%)以较为稳定或非常稳定的形态存在,重新释放的可能性很低。联合覆盖层中F1和F2态Pb之和占总可提取态Pb的比例为44.1%,而F3和F4态Pb之和占总可提取态Pb的比例为55.9%。由此可见,被NZ和FeCA联合覆盖层所吸附的Pb中超过半数以较为稳定或非常稳定的形态存在,被NZ和FeCA联合覆盖层所吸附的Pb总体上释放风险较低。需要指出的,F1+F2态Pb占总可提取态Pb的比例仍达到了44.1%。这说明,NZ和FeCA联合覆盖层吸附底泥中Pb饱和后,对其进行回收处理仍然是很有必要的。
3. 结论(Conclusion)
(1)与Langmuir模型相比,NZ对水中Cu(Ⅱ)和Pb(Ⅱ)的等温吸附数据更适合采用Freundlich模型加以描述;与Freundlich模型相比,Langmuir模型更适合用于描述FeCA对水中Cu(Ⅱ)和Pb(Ⅱ)的等温吸附数据;根据Langmuir模型预测得到的NZ和FeCA对水中Cu(Ⅱ)的最大单分子层吸附量分别为7.98 mg·g−1和27.2 mg·g−1,NZ和FeCA对水中Pb(Ⅱ)的最大分子层吸附量分别为75.4 mg·g−1和1150 mg·g−1。
(2)NZ单独覆盖、FeCA单独覆盖和NZ/FeCA联合覆盖均可以有效地降低底泥中Cu和Pb向上覆水体中释放的风险,并且NZ和FeCA的联合覆盖控制底泥中Cu和Pb向上覆水体中释放的效率要高于NZ的单独覆盖。
(3)NZ和FeCA联合覆盖不仅可有效地降低上覆水-底泥垂向剖面上DGT有效态Cu和Pb的浓度,而且可降低底泥-水界面Cu和Pb的扩散通量。
(4)被NZ和FeCA联合覆盖层所吸附的Cu的存在形式为可氧化态(60.4%)>残渣态(31.1%)>可交换态(6.89%)>可还原态(1.62%),而Pb的存在形式则为残渣态(48.8%)>可还原态(26.9%)>可交换态(17.2%)>可氧化态(7.16%)。
(5)NZ和FeCA联合覆盖对底泥中DGT有效态Cu和Pb以及底泥-水界面Cu和Pb扩散通量的削减,是其控制底泥中Cu和Pb向上覆水体中释放的关键。
-
表 1 甲烷选择还原NO催化剂
Table 1. Catalysts for selective catalytic reduction of NO with methane
催化剂 反应工况 NO转化率/% 温度/℃ 来源 Co-ZSM-5 0.2%NO+0.2%CH4+2%O2 50 500 [9] Co-ZSM-5 0.082%NO+0.07%CH4+2.5%O2 50 400 [10] Co-ZSM-5 0.5%NO+0.2%CH4+3%O2 70 400 [11] Co, H-mordenite 0.4%NO+0.4%CH4+2%O2 60 550 [12] Pd-mordenite 0.101%NO+0.33%CH4+4.1%O2 90 600 [13] InCoFER 0.1%NO+0.2%CH4+4%O2+0.25%H2O 97.5 450 [14] Pd-MOR 0.1%NO+0.1%CH4+7%O2 25 500 [15] Ce/Pd-MOR 0.1%NO+0.1%CH4+7%O2 35 500 [15] Ga-H-ZSM-5 0.161%NO+0.1%CH4+2.5%O2 34 500 [16] Ga/H-ZSM-5 0.1%NO+0.1%CH4+10%O2 90 500 [17] Ga2O3/Al2O3 0.1%NO+0.1%CH4+6.7%O2 70 550 [18] γ-Ga2O3-Al2O3(ST) 0.1%NO+0.1%CH4+6.7%O2 90 550 [19-20] γ-Ga2O3-Al2O3(SP) 0.1%NO+0.2%CH4+6.7%O2 70 550 [21] γ-Ga2O3-Al2O3(CP) 0.1%NO+0.1%CH4+6.7%O2 85 550 [22] 表 2 不同催化剂的织构特性
Table 2. Textural properties of different catalysts
催化剂 比表面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm Ga2O3-Al2O3 221 0.582 8.2 2Fe/Ga2O3-Al2O3 221 0.643 9.5 5Fe/Ga2O3-Al2O3 213 0.580 9.4 10Fe/Ga2O3-Al2O3 217 0.626 10.0 表 3 xFe/Ga2O3-Al2O3的表面组成(原子分数)
Table 3. Surface composition of xFe/Ga2O3-Al2O3 (atomic fraction)
% 催化剂 Ga Fe OⅠ OⅡ OⅢ 2Fe/Ga2O3-Al2O3 14.66 1.83 7.46 18.47 33.26 5Fe/Ga2O3-Al2O3 15.95 2.19 10.44 23.74 25.47 10Fe/Ga2O3-Al2O3 13.03 3.71 6.85 18.51 36.35 表 4 催化剂的B酸和L酸含量
Table 4. Brønsted and Lewis acid content of catalysts
μmol·g−1 催化剂 40 ℃ 170 ℃ 300 ℃ B酸 L酸 B酸 L酸 B酸 L酸 Ga2O3-Al2O3 3.88 608.85 2.14 374.83 0 181.66 2Fe/Ga2O3-Al2O3 2.43 813.51 1.18 250.31 0 162.40 5Fe/Ga2O3-Al2O3 4.15 835.59 2.23 298.28 0 100.71 10Fe/Ga2O3-Al2O3 3.48 976.56 1.28 356.35 0 172.97 -
[1] IWAMOTO M. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over cupper ion-exchanged zeolites[J]. Shokubai, 1990, 32: 430-433. [2] HELD W, KÖNIG A, RICHTER T, et al. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Transactions, 1990, 99: 209-216. [3] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal, 2018, 353: 839-848. doi: 10.1016/j.cej.2018.07.201 [4] CHAIEB T, DELANNOY L, LOUIS C, et al. On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx[J]. Applied Catalysis B: Environmental, 2013, 142-143: 780-784. doi: 10.1016/j.apcatb.2013.06.010 [5] KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, et al. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Applied Catalysis A: General, 2007, 325(2): 345-352. doi: 10.1016/j.apcata.2007.02.035 [6] PAN H, SU Q F, CHEN J, et al. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature[J]. Environmental Science & Technology, 2009, 43(24): 9348-9353. [7] OHTSUKA H, TABATA T. Influence of Si/Al ratio on the activity and durability of Pd-ZSM-5 catalysts for nitrogen oxide reduction by methane[J]. Applied Catalysis B: Environmental, 2000, 26(4): 275-284. doi: 10.1016/S0926-3373(00)00127-2 [8] 张涛, 任丽丽, 林励吾. 甲烷选择催化还原NO研究进展[J]. 催化学报, 2004, 25(1): 75-83. doi: 10.3321/j.issn:0253-9837.2004.01.017 [9] BELLMANN A, ATIA H, BENTRUP U, et al. Mechanism of the selective reduction of NOx by methane over Co-ZSM-5[J]. Applied Catalysis B: Environmental, 2018, 230: 184-193. doi: 10.1016/j.apcatb.2018.02.051 [10] LI Y, ARMOR J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen[J]. Applied Catalysis B: Environmental, 1992, 1(4): L31-L40. doi: 10.1016/0926-3373(92)80050-A [11] LI Y J, BATTAVIO P J, ARMOR J N. Effect of water vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5[J]. Journal of Catalysis, 1993, 142(2): 561-571. doi: 10.1006/jcat.1993.1231 [12] LÓNYI F, SOLT H E, PÁSZTI Z, et al. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts[J]. Applied Catalysis B: Environmental, 2014, 150-151: 218-229. doi: 10.1016/j.apcatb.2013.12.024 [13] COSTILLA I O, SANCHEZ M D, VOLPE M A, et al. Ce effect on the selective catalytic reduction of NO with CH4 on Pd-mordenite in the presence of O2 and H2O[J]. Catalysis Today, 2011, 172(1): 84-89. doi: 10.1016/j.cattod.2011.03.025 [14] GIL B, JANAS J, WŁOCH E, et al. The influence of the initial acidity of HFER on the status of Co species and catalytic performance of CoFER and InCoFER in CH4-SCR-NO[J]. Catalysis Today, 2008, 137(2): 174-178. doi: 10.1016/j.cattod.2008.01.004 [15] MENDES A N, ZHOLOBENKO V L, THIBAULT-STARZYK F, et al. On the enhancing effect of Ce in Pd-MOR catalysts for NOx CH4-SCR: A structure-reactivity study[J]. Applied Catalysis B: Environmental, 2016, 195: 121-131. doi: 10.1016/j.apcatb.2016.05.004 [16] LI Y J, ARMOR J N. Selective Catalytic reduction of NO with methane on gallium catalysts[J]. Journal of Catalysis, 1994, 145(1): 1-9. doi: 10.1006/jcat.1994.1001 [17] KIKUCHI E, YOGO K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere[J]. Catalysis Today, 1994, 22(1): 73-86. doi: 10.1016/0920-5861(94)80093-6 [18] SHIMIZU K, SATSUMA A, HATTORI T. Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 1998, 16(4): 319-326. doi: 10.1016/S0926-3373(97)00088-X [19] MIYAHARA Y, TAKAHASHI M, MASUDA T, et al. Selective catalytic reduction of NO with C1~C3 reductants over solvothermally prepared Ga2O3-Al2O3 catalysts: Effects of water vapor and hydrocarbon uptake[J]. Applied Catalysis B: Environmental, 2008, 84(1): 289-296. doi: 10.1016/j.apcatb.2008.04.005 [20] TAKAHASHI M, INOUE N, NAKATANI T, et al. Selective catalytic reduction of NO with methane on γ-Ga2O3-Al2O3 solid solutions prepared by the glycothermal method[J]. Applied Catalysis B: Environmental, 2006, 65(1): 142-149. doi: 10.1016/j.apcatb.2006.01.007 [21] WATANABE T, MIKI Y, MASUDA T, et al. Performance of γ-Ga2O3-Al2O3 solid solutions prepared by spray pyrolysis for CH4-SCR of NO[J]. Applied Catalysis A: General, 2011, 396(1): 140-147. doi: 10.1016/j.apcata.2011.02.005 [22] MASUDA T, WATANABE T, MIYAHARA Y, et al. Synthesis of Ga2O3-Al2O3 catalysts by a coprecipitation method for CH4-SCR of NO[J]. Topics in Catalysis, 2009, 52(6/7): 699-706. [23] 周皞, 苏亚欣, 戚越舟, 等. 水蒸气对甲烷在金属铁表面还原NO行为的影响[J]. 燃料化学学报, 2014, 42(11): 1378-1386. doi: 10.3969/j.issn.0253-2409.2014.11.016 [24] ZHOU H, SU Y X, LIAO W Y, et al. NO reduction by propane over monolithic cordierite-based Fe/Al2O3 catalyst: Reaction mechanism and effect of H2O/SO2[J]. Fuel, 2016, 182: 352-360. doi: 10.1016/j.fuel.2016.05.116 [25] 董士林, 苏亚欣, 刘欣, 等. Fe/Ti-PILC用于C3H6选择性催化还原NO的研究[J]. 燃料化学学报, 2018, 46(10): 1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011 [26] 李前程, 苏亚欣, 董士林, 等. Fe-PILC在贫燃条件下催化丙烯选择性还原NO[J]. 燃料化学学报, 2018, 46(10): 1240-1248. doi: 10.3969/j.issn.0253-2409.2018.10.012 [27] 杨溪, 苏亚欣, 钱文燕, 等. Fe-Ag/Al2O3 催化丙烯还原NO的实验研究[J]. 燃料化学学报, 2017, 45(11): 1365-1375. doi: 10.3969/j.issn.0253-2409.2017.11.012 [28] YUAN M H, SU Y X, DENG W Y, et al. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6[J]. Chemical Engineering Journal, 2019, 375: 122091. doi: 10.1016/j.cej.2019.122091 [29] MRAD R, COUSIN R, POUPIN C, et al. Propene oxidation and NO reduction over MgCu-Al(Fe) mixed oxides derived from hydrotalcite-like compounds[J]. Catalysis Today, 2015, 257: 98-103. doi: 10.1016/j.cattod.2015.02.020 [30] FENG X B, KEITH H W. FeZSM-5: A durable SCR catalyst for NOx removal from combustion streams[J]. Journal of Catalysis, 1997, 166(2): 368-376. doi: 10.1006/jcat.1997.1530 [31] 苏亚欣, 任立铭, 苏阿龙, 等. 甲烷在金属铁及氧化铁表面还原NO的研究[J]. 燃料化学学报, 2013, 41(11): 1393-1400. [32] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135. doi: 10.3969/j.issn.0253-2409.2013.09.016 [33] AREÁN C O, BELLAN A L, MENTRUIT M P, et al. Preparation and characterization of mesoporous γ-Ga2O3[J]. Microporous and Mesoporous Materials, 2000, 40(1): 35-42. doi: 10.1016/S1387-1811(00)00240-7 [34] AREÁN C O, DELGADO M R, MONTOUILLOUT V, et al. Synthesis and characterization of spinel-type gallia-alumina solid solutions[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(11): 2121-2126. doi: 10.1002/zaac.200570027 [35] HANEDA M, KINTAICHI Y, SHIMADA H, et al. Selective reduction of NO with propene over Ga2O3-Al2O3: Effect of sol-gel method on the catalytic performance[J]. Journal of Catalysis, 2000, 192(1): 137-148. doi: 10.1006/jcat.2000.2831 [36] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. doi: 10.1515/pac-2014-1117 [37] WATANABE T, MIKI Y, MASUDA T, et al. Pore structure of γ-Ga2O3-Al2O3 particles prepared by spray pyrolysis[J]. Microporous and Mesoporous Materials, 2011, 145(1): 131-140. doi: 10.1016/j.micromeso.2011.05.002 [38] 高俊华, 刘平, 吉可明, 等. GaZSM-5分子筛的合成、表征及其在甲醇转化制烃(MTH)反应中的催化性能[J]. 燃料化学学报, 2018, 46(4): 465-472. doi: 10.3969/j.issn.0253-2409.2018.04.012 [39] MIYAHARA Y, WATANABE T, MASUDA T, et al. Evaluation of catalytic activity of Ga2O3-Al2O3 solid solutions for CH4-SCR by UV-vis spectra after adsorption of C3H6 as a probe[J]. Journal of Catalysis, 2008, 259(1): 36-42. doi: 10.1016/j.jcat.2008.07.007 [40] WANDELT K. Photoemission studies of adsorbed oxygen and oxide layers[J]. Surface Science Reports, 1982, 2(1): 1-121. doi: 10.1016/0167-5729(82)90003-6 [41] YANG S, GUO Y, YAN N, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B: Environmental, 2011, 101(3): 698-708. doi: 10.1016/j.apcatb.2010.11.012 [42] LIU Y M, XU J, HE L, et al. Facile synthesis of Fe-loaded mesoporous silica by a combined detemplation−incorporation process through Fenton’s chemistry[J]. The Journal of Physical Chemistry C, 2008, 112(42): 16575-16583. doi: 10.1021/jp802202v [43] ZHANG Q H, LI Y, AN D L, et al. Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen[J]. Applied Catalysis A: General, 2009, 356(1): 103-111. doi: 10.1016/j.apcata.2008.12.031 [44] TIAN T F, ZHAN M C, WANG W D, et al. Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fe1−yGayO3−δ perovskite-type oxides[J]. Catalysis Communications, 2009, 10(5): 513-517. doi: 10.1016/j.catcom.2008.10.028 [45] 乐向晖, 张栖, 付名利, 等. SO2对La0.8K0.2Cu0.05Mn0.95O3钙钛矿催化剂氧化碳烟的影响[J]. 无机化学学报, 2009, 25(7): 1170-1176. doi: 10.3321/j.issn:1001-4861.2009.07.006 [46] 叶青, 王瑞璞, 徐柏庆. 柠檬酸溶胶-凝胶法制备的Ce1-xZrxO2: 结构及其氧移动性[J]. 物理化学学报, 2006, 22(1): 33-37. doi: 10.3866/PKU.WHXB20060107 [47] GUO D Y, WU Z P, LI P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067-1076. doi: 10.1364/OME.4.001067 [48] LI L D, SHEN Q, LI J J, et al. Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition[J]. Applied Catalysis A: General, 2008, 344(1): 131-141. doi: 10.1016/j.apcata.2008.04.011 [49] CAPELA S, CATALÃO R, RIBEIRO M F, et al. Methanol interaction with NO2: An attempt to identify intermediate compounds in CH4-SCR of NO with Co/Pd-HFER catalyst[J]. Catalysis Today, 2008, 137(2): 157-161. doi: 10.1016/j.cattod.2007.11.048 [50] FIERRO G, MORETTI G, FERRARIS G, et al. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8[J]. Applied Catalysis B: Environmental, 2011, 102(1): 215-223. doi: 10.1016/j.apcatb.2010.12.001 [51] SHAO C T, LANG W Z, YAN X, et al. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: Effects of support and loading amount[J]. RSC Advances, 2017, 7(8): 4710-4723. doi: 10.1039/C6RA27204E [52] EL-MALKI E-M, VAN SANTEN R A, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622. doi: 10.1021/jp990116l [53] DATKA J, TUREK A M, JEHNG J M, et al. Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation[J]. Journal of Catalysis, 1992, 135(1): 186-199. doi: 10.1016/0021-9517(92)90279-Q [54] BARZETTI T, SELLI E, MOSCOTTI D, et al. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(8): 1401-1407. doi: 10.1039/ft9969201401 [55] 吴越. 取代硫酸、氢氟酸等液体酸催化剂的途径[J]. 化学进展, 1998, 10(2): 158-171. doi: 10.3321/j.issn:1005-281X.1998.02.007 [56] LÓNYI F, SOLT H E, VALYON J, et al. The SCR of NO with methane over In,H- and Co,In,H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Applied Catalysis B: Environmental, 2012, 117-118: 212-223. doi: 10.1016/j.apcatb.2012.01.022 [57] KANTCHEVA M, VAKKASOGLU A S. Cobalt supported on zirconia and sulfated zirconia I: FT-IR spectroscopic characterization of the NOx species formed upon NO adsorption and NO/O2 coadsorption[J]. Journal of Catalysis, 2004, 223(2): 352-363. doi: 10.1016/j.jcat.2004.02.007 期刊类型引用(1)
1. 孙鹏辉. 金属滤袋一体化脱除技术在加热炉烟气治理中的应用研究. 节能. 2024(05): 78-80 . 百度学术
其他类型引用(3)
-