Processing math: 100%

催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响

徐庆生, 宋永吉, 刘久欣, 王新承, 李翠清, 王虹. 催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响[J]. 环境工程学报, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
引用本文: 徐庆生, 宋永吉, 刘久欣, 王新承, 李翠清, 王虹. 催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响[J]. 环境工程学报, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
XU Qingsheng, SONG Yongji, LIU Jiuxin, WANG Xincheng, LI Cuiqing, WANG Hong. Effect of silica-alumina ration of Cu/HZSM-5 catalyst on N2O catalytic decomposition[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
Citation: XU Qingsheng, SONG Yongji, LIU Jiuxin, WANG Xincheng, LI Cuiqing, WANG Hong. Effect of silica-alumina ration of Cu/HZSM-5 catalyst on N2O catalytic decomposition[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103

催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响

    作者简介: 徐庆生(1994—),男,硕士研究生。研究方向:环境催化、气体污染物治理。E-mail:18766953682@163.com
    通讯作者: 宋永吉(1963—),男,博士,教授。研究方向:环境减排催化剂等。E-mail:songyongji@bipt.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(20176012,21076025)
  • 中图分类号: X511

Effect of silica-alumina ration of Cu/HZSM-5 catalyst on N2O catalytic decomposition

    Corresponding author: SONG Yongji, songyongji@bipt.edu.cn
  • 摘要: 为系统研究Cu/HZSM-5硅铝比对其各类性能的影响,采用等体积浸渍法与离子交换法,以硅铝比为27、50、117的HZSM-5为载体,制备负载型N2O催化分解催化剂Cu/HZSM-5和Cu/ZSM-5,催化剂的活性组分为CuO。通过催化剂反应活性评价、X射线荧光光谱分析、X射线衍射分析结果,对2种方法制备催化剂活性的差异进行了分析。利用比表面积孔径分析仪(BET)、X射线衍射分析(XRD)、场发射扫描电镜(SEM)、X射线荧光光谱分析(XRF)、氢气程序升温还原分析(H2-TPR)、氨气程序升温脱附分析(NH3-TPD)等表征手段对催化剂物化性质等进行分析,得到载体HZSM-5的硅铝比差异对催化剂特征结构、比表面积、特征形貌、酸性位数量、可还原性能的影响规律。等体积浸渍法制备的催化剂活性评价结果表明,硅铝比为27的Cu8/HZSM-5催化剂活性最好,完全催化分解N2O的温度在400 ℃左右。水热稳定性实验结果以及寿命实验结果表明,硅铝比为27的Cu8/HZSM-5具有良好的水热稳性,3种硅铝比的Cu8/HZSM-5催化剂均具备良好的热稳定性。Cu/HZSM-5的活性评价以及各种表征结果显示,在一定范围内,硅铝比越低,催化剂活性越好。
  • 随着国家对环境保护的不断重视以及人民群众对碧水蓝天、美好环境热切需求的不断增长,以流域治理、湿地建设、“碧水绕城” “美丽乡村”等为代表的水环境治理项目越来越多[1]。城市化水平较高的地区,人们的生产生活活动对城市湖泊水体的影响更为突出,尤其是作为河流蓄泄的枢纽湖泊(如嘉兴南湖),其水环境治理一直是生态环境领域的难点。

    国内外比较成熟的湖泊生态修复理论主要包括多稳态理论、营养盐浓度限制理论和生物操纵理论[2]。多稳态理论指在相同的外部环境条件下,浅水型湖泊可能处在“草型清水态”和“藻型浊水态”2种完全不同的状态[3],2种状态之间存在着临界阈值[4-5];营养盐浓度限制理论强调营养盐对生物群落的限制与驱动,是湖泊多稳态保持和转化的动力[2];生物操纵理论通过生物调控治理藻类水华[6]而应用在富营养化湖泊的治理中[7]。柯杰等[8]认为湖泊湿地修复技术主要包括物理技术、生物技术和化学技术。物理技术中的环保疏浚是采取人工、机械的措施适当去除水体中的污染底泥,以降低底泥中污染物的释放通量和生态风险,并对疏浚后的污染底泥进行安全处理处置的技术,是河流、湖泊(水库) 水污染治理的重要技术之一[9]。南京玄武湖采用的围堰分区干式法[10-11],西安兴庆湖采用的高压水枪水力冲挖方式[12],杭州西湖采用的环保绞吸式挖泥船疏浚方式[13]等均属于比较常见的环保疏浚技术。但环保疏浚缺乏与生态修复技术之间的衔接,如疏浚底泥的二次利用、无害化处置通常缺乏考虑[14]。其他物理技术包括通过机械、设备对城市湖泊湿地进行换水、补水,实现水量稀释,可以快速降低营养盐浓度[8],比如常用的混凝-沉淀、磁混凝技术、超磁分离一体化工艺等。其中超磁分离一体化工艺已在巢湖塘西河[15]生态补水、吴江同里古镇[16]景观补水、北京总装航天城人工湖[17]活水循环等水环境项目中进行广泛应用。在生物技术方面,以沉水植物为主或结合其他修复技术的原位生态修复已十分普遍,在太湖[18-19]、上海临港滴水湖[20]、杭州西湖[21]、昆明滇池草海[22]等均有广泛应用。化学技术主要是指利用药剂、化学工艺对湖泊进行治理,在城市湖泊水体生态修复方面应用较少。

    与传统城市湖泊相比,浙江嘉兴南湖作为嘉兴主要河流的交汇处,其水体库容小、水力停留时间短,形式上更接近“河流型湖泊”。南湖作为5A级景区,往来游客众多,游船航次频繁,关注度极高,生态修复对水体的扰动相对更为受限。本研究以嘉兴南湖生态环境修复工程(一期)项目为例,基于南湖水环境调查的已有成果[23-26],对南湖水质问题和水体浑浊原因进行分析,提出嘉兴南湖生态系统构建的整理思路和关键技术,并对工程实施后的效果进行评价,以期为平原河网水系、开放性水域、高浊度水体的城市湖泊治理提供借鉴和参考。

    南湖位于浙江省嘉兴市区,湖体南北长、东西狭,常年水面面积为0.52 km2,是嘉兴市各主要河流蓄泄的枢纽,是海盐塘、平湖塘、嘉善塘等多条河流的起点、终点交汇处[27]。南湖水体悬浮物(SS)含量较高,透明度较低(基本维持在25 cm左右),总磷(TP)远远高于水环境功能区考核的Ⅲ类标准(湖泊标准)[28-29]。而南湖水体由于透明度低,光线条件差,湖区水底基本上无沉水植物覆盖。换水周期是湖泊水环境的一个重要参数,影响着水体中污染物与营养物的质量浓度与停留时间,同时也影响着水体中发生的生物与化学反应过程时间的长短[30]。南湖换水周期仅为1.59 d[31],水力停留时间短,每天的水体交换量大,导致上游来水所带来的悬浮性颗粒物很难沉降。

    南湖水体中TP质量浓度为0.121~0.388 mg·L−1,平均为0.246 mg·L−1,超过地表水Ⅴ类水质标准(湖泊标准)[29]。空间分布显示,水体中TP的空间分布差异性显著,质量浓度较高的区域主要集中在西南部及东南部的南湖入湖河道,而低值区主要分布在南部堤岸及周围区域[23]。南湖水体中TN质量浓度为3.81~4.99 mg·L−1,平均为4.32 mg·L−1,超过地表水Ⅴ类水质标准(湖泊标准)[29]。空间分布显示,TN质量浓度从南湖西南角和东南角向北部出口逐渐递减,而在湖心岛的南部堤岸周围的TN质量浓度明显低于其他区域[24]。NH3-N的质量浓度相对较低(0.67~1.67 mg·L−1),在地表水Ⅲ~Ⅴ类水质标准(湖泊标准)[29]之间波动,均值为1.22 mg·L−1,NH3-N的空间分布与TN较为相似[24]。近年来,南湖水质持续好转,NH3-N指标年均可达到Ⅲ类水标准(湖泊标准)[29],但TN和TP含量依然很高,大部分月份的TP仍在0.20 mg·L−1以上,颗粒形态磷占比达到60%以上。总体来看,水质仍处于地表水劣Ⅴ类水平(湖泊标准)[29]

    南湖水体悬浮物质量浓度为29.2~75.2 mg·L−1,均值为39.0 mg·L−1。与国内其他主要湖泊相比,南湖水体悬浮物质量浓度均值略低于巢湖,高于其他湖泊[25](表1)。入河道悬浮物中粒径为10~50 μm的颗粒占比较大,而湖区水体中悬浮物粒径以4~10 μm为主,湖区底泥最上层颗粒粒径多以10~50 μm 为主。这说明河道携带的悬浮物粒径为10~50 μm的颗粒可沉降下来,但粒径为10 μm 以下的悬浮物很难通过重力沉降下来。南湖水体悬浮物质量浓度大小主要受上游来水及湖区船舶活动的影响,航道区域悬浮物质量浓度明显高于周边水体[25]。南湖水系中的水体悬浮物分布[25]图1所示。

    表 1  南湖与国内其他湖泊水体中的TSS质量浓度及其均值
    Table 1.  TSS mass concentration and its mean value in Nanhu Lake and other domestic lakes
    湖泊名称质量浓度/( mg·L−1)均值/( mg·L−1)
    东湖13. 80~23. 7618. 72
    蠡湖1. 00~78. 0017. 35
    鄱阳湖5. 00~72. 0023. 87
    梁子湖2. 83~26. 8512. 41
    洪湖2. 24~25. 6610. 98
    太湖11. 08~85. 4034. 31
    巢湖17. 80~67. 5342. 76
    南湖29. 20~75. 2038. 95
     | Show Table
    DownLoad: CSV
    图 1  南湖水体中TSS质量浓度和透明度空间分布
    Figure 1.  Spatial distribution of TSS concentrations and SD in Nanhu lake

    南湖水体透明度为10~46 cm,均值为25 cm,南湖湖区水体透明度的空间分布差异性较为显著,水体透明度较低的地方主要集中在西南水域以及湖体航道[26]。河流、湖泊中船舶的航行对于水体底部的沉积物具有很大的扰动作用[32],特别是船舶尾部的螺旋桨对于浅水河流及湖泊底泥扰动的作用更为巨大。南湖游船、巡逻艇、执法船、保洁船等船舶扰动引起底泥再悬浮是航道区域透明度低的主要原因。南湖水系中的水体透明度分布情况[26]图1所示。

    南湖周边多为景观块石护岸和直立式岸坡,上游河道多为浆砌块石或钢筋混凝土直立式岸坡。该类型岸坡生态型差,近岸侧几乎无挺水植物。受水体浑浊、透明度低、氮磷超标等影响,南湖湖区水下几乎无沉水植物。南湖生态环境恢复的困难主要有以下几点。

    1)水体透明度低,水深条件差。光线是沉水植物生存的最基本条件,这是因为沉水植物需要通过光合作用进行代谢活动,因此水下光照条件是影响沉水植物生长存活的最主要因素。影响水下光照条件的主要指标包括水深、透明度、悬浮物浓度、藻类等。在常水位为1.16 m时,南湖平均水深为2.8 m,而南湖水体透明度均值只有25 cm。沉水植物生长所需的光补偿深度一般应为水体透明度的1.5倍[33],按照南湖目前的水深条件,其水体透明度远远不能满足沉水植物生长的基本条件,这也是南湖生态系统构建面临的最大困难。

    2)景区内施工,沉水植物种植方式受限。沉水植物的常见种植方式主要包括扦插法、抛投法等。扦插法根据种植水深的不同又分为浅水扦插(水深一般小于0.5 m)和船上扦插(水深为0.5~2.0 m)。浅水扦插的前提是需对拟种植区域进行抽水,形成干地作业环境,再根据植物的生长习性逐渐蓄水,直至达到设计常水位。沉水植物“扦插”种植具有生产效率高、苗木成活率高、定位造型易控制等优点。抛投法则分为配重抛投和带土抛投。抛投法虽然施工效率快、无需降水,但是水草成型不规则、容易飘草,且成活率低。嘉兴南湖为5A级景区,且处于城市核心区,邻近红船保护区域,严禁抽水作业,故只能采用水上抛投的施工方法。

    3)湖区船舶多,船行波扰动大。在沉水植物生长初期,由于幼苗尚未扎根,船舶引起的船行波作用会影响沉水植物幼苗的正常扎根,直接威胁沉水植物的成活。南湖湖心岛与会景园之间有固定的红船游览航线,嘉兴水上巴士也从小瀛洲入南湖。此外,南湖管理单位众多,海事、港航、水上派出所、名胜公司、旅发公司等均有执法或巡逻船舶,湖区船舶密度大、航线分散,影响沉水植物的成活率。

    水体透明度的主要影响因子包括光学衰减系数、悬浮物及叶绿素a等[34]。南湖透明度低的关键原因是悬浮物质量浓度高。沉水植物生长的基本条件是光照强度,此外,水深条件、污染物浓度、波浪条件等也能影响沉水植物的正常生长。综合来看,嘉兴南湖生态修复的核心就是要提升水体透明度和恢复湖区水下生态系统。

    嘉兴南湖生态环境修复工程(一期)项目实施的主要目的是改善南湖水体质量,恢复湖区生态系统,实现南湖水质、生态及景观的全面提升。本项目的质量目标是使湖区水体透明度达到80 cm,沉水植物覆盖率达到25%。以沉水植物为主导,与水生动物相结合构建的水下生态系统作为一种新兴的河湖水体治理技术,已被许多工程采用,以实现湖泊氮磷污染、维持清水态湖泊的目标[35]。为实现工程治理目标,项目团队创新性地采用了前期“水养草”、后期“草养水”的治理理念。前期通过一系列工程措施提升水体透明度等指标,以便为沉水植物创造生长条件。后期待沉水植物恢复良好、“水下森林”生态系统构建成功后,再通过沉水植物生态系统的自净能力提升水体透明度等指标。南湖生态系统构建的整体思路如图2所示。

    图 2  南湖生态环境修复的整体思路和技术路线
    Figure 2.  Overall thinking and technical route of Nanhu ecological environment restoration

    1)翻板式钢坝闸——水量调控。上游来水悬浮物质量浓度高[25]、TP污染物高[23],为防止上游浊水持续进入南湖,在南湖上游河道(青龙港、采菱桥港、宝莲桥港、长盐塘、张家门港)修建水量调控的闸坝措施。拦河闸坝的结构形式通常有直升式钢闸门、上翻式液压门、倒卧式液压门、钢坝、橡胶坝等。直升式闸门上部结构较大,整体景观效果差;上翻式液压门闸门开启时,影响通航且景观效果差;倒卧式液压门闸门开启以后河道易产生淤积。本工程的水量调控措施主要采用了5座带船舶自动识别的自动化控制翻板式钢坝闸,既能满足设计对外源污染的拦截及水体交换的控制,又不影响正常通航秩序,同时钢坝启闭机室为地下结构,建成后美观大方,最大程度地保证了节能、环保、人居和谐。上游长盐塘钢坝建设实施和建成后现场照片如图3所示。

    图 3  长盐塘钢坝建设中和建成后现场照片
    Figure 3.  Site photos during and after the construction of changyantang steel dam

    2)超磁分离一体化工艺——净水降浊。悬浮物的去除通常可采用混凝-沉淀、磁粉-混凝工艺等措施。混凝-沉淀工艺在我国大中型水厂中应用较为普遍,但是工艺所需占地面积较大,而南湖位于嘉兴核心城区,无法满足工艺所需的占地需求。超磁分离一体化工艺作为磁粉-混凝工艺的典型代表,通过磁盘吸附进行固液分离,实现水体快速净化,具有占地面积小、处理速度快、自动化程度高、模块化快速安装的优点[17],特别适合嘉兴南湖等城市核心区用地面积紧张的水环境治理项目。超磁设备部分主要由16个标准集装箱组成,土建部分由取水池、调蓄池、加药间、磁粉仓库等组成,全部的设备和土建集中在嘉兴大桥南侧大约3 000 m2场地内,整个超磁设备的补水规模达到20×104 t·d−1。超磁分离一体化工艺流程[17]和建成后实景如图4所示。

    图 4  超磁一体化工艺流程和建成后实景
    Figure 4.  Super magnetic integrated process flow and real scene after completion

    环保绞吸疏浚与土工管袋干化技术——去除底泥污染物。环保疏浚的目的主要是为了清除污染底泥,一般以清淤厚度作为控制标准,而非传统疏浚的增加通航水深。内河或湖泊、湿地的环保清淤常用船机包括抓斗式挖泥船、反铲式挖泥船、链斗式挖泥船、绞吸式挖泥船等。前3种挖泥船的挖泥工艺均为“挖-运-抛”,泥驳靠泊、抛泥均需要作业时间,导致工艺不能连续作业,影响施工效率;而绞吸式挖泥船的最大优点就是可以连续作业,施工效率较高。嘉兴南湖湖区的清淤采用了加装整流罩的环保绞吸挖泥船,减小了因绞刀切削疏浚土导致的污染物再悬浮,疏浚土通过排泥管线输送至处理场地,利用土工管袋干化的方式,实现了疏浚土减量化、无害化的处理。同时,干化后的疏浚土可以作为绿化种植土回收利用,干化尾水再次通过超磁分离一体化设备处理,实现达标排放,疏浚工艺全程环保化处理[36]

    1)水上微地形改造技术——重塑水下地形。微地形改造的目的是改变近岸侧沉水植物种植区域的水深条件,重塑水下地形,为沉水植物种植建立良好的下部基础。南湖南岸成功堤一侧为景观块石护岸,其他位置多为直立式护岸结构,基本无自然岸坡,近岸侧水深接近湖区平均水深,无梯级过渡。南湖的近岸侧微地形改造采用松木桩护脚,松木桩内侧为土工袋装土,防止内侧土方冲刷渗漏,微地形改造区域主体采用种植土散装回填。松木桩施打、袋装土填筑和散装土回填均采用平板驳船配合反铲挖机施工。微地形改造后,近岸侧沉水植物种植区域水深由2.5 m左右恢复至1.5 m左右,为沉水植物种植创造了良好的水深、地形和土质条件。

    2)水上抛投与软围隔技术——带水栽植沉水植物。嘉兴南湖由于不具备抽水干地作业施工的条件,故沉水植物不能采用常规的扦插种植方式。本次沉水植物种植采用了水上小型作业辅助船舶、沉水植物带土或配重抛投的带水栽植方式。带土抛投是直接将植物基地的苦草连土带苗铲起,装入周转箱中并运输至项目现场。抛投时将土块分成小丛,直接投放至湖底,这种方式仅限于种植根系发达的苦草。配重抛投是将沉水植物包裹在切割好的网片上,并放入石子后用橡皮筋扎牢,做成球状,将加工好的单个个体放入泡沫箱或周转箱中并运输至项目现场,按照密度直接投放至水底。虽然水上抛投施工效率和幼苗成活率低,但受限于南湖苛刻的施工条件,也取得了良好的施工效果。另一方面,为了减少南湖湖区频繁的船舶航行所带来的船行波影响,在沉水植物种植区域外围布置软围隔,用以削减船行波、风成浪等对沉水植物幼苗扎根的不良影响。此外,在沉水植物种植前期,通过拉网赶鱼、软围隔隔断等措施,防止食草性鱼类在沉水植物生长初期啃食幼苗,确保沉水植物的成活率。沉水植物水上抛投和软围隔如图5所示。

    图 5  沉水植物水上抛投与软围隔
    Figure 5.  Submerged plant throwing over water and soft enclosure

    3) 底栖动物投放——构建完整的生态系统。完整的“水下森林”生态系统是以沉水植物为主体,并辅以螺类、蚌类等底栖动物,以及水中的草食性、肉食性鱼类等生物群落共同组成。嘉兴南湖除恢复了湖区25%面积、约14.8×104 m2的沉水植物外,还配套投放了约5.6 t的螺类、蚌类和虾类,如铜锈环齿螺、背角无齿蚌、三角帆蚌、日本沼虾,重新构建了南湖的“水下森林”生态系统。

    通过南湖生态环境修复工程(一期)项目的实施,南湖水体感官明显好转,水体污染物指标显著改善,水体透明度基本达到设计要求,沉水植物恢复良好。翻板式钢坝闸、超磁分离一体化工艺、环保绞吸疏浚与土工管袋干化、水上抛投与软围隔等关键技术在南湖水体生态修复过程中发挥了重要作用。

    1)翻板式钢坝闸兼具美观、通航、挡水、船舶自动识别的作用,克服了传统挡水建筑物影响通航或者占用水域面积影响景观效果的缺点,尤其适用于城市核心区域、通航河道挡水或拦河建筑物的建设。

    2)超磁分离一体化工艺设备具有占地面积小、噪音低、自动化程度高、安装速度快等优点,特别适合嘉兴南湖此类治理工期紧张、用地限制、环保要求高的项目。

    3)湖区环保疏浚采用环保绞吸疏浚和土工管袋干化结合的技术,土工管袋干化后的尾水创新性地采用超磁分离一体化设备进行二次处理。南湖所采用的环保疏浚技术减小了疏浚过程中的底泥再悬浮,实现了疏浚土的减量化、无害化处置。

    4)沉水植物水上抛投与软围隔技术解决了南湖不能抽水作业的难题,配合水生动物的投放,南湖水下森林生态系统恢复良好,为南湖水体生态修复奠定了基础。

    该工程完工后,项目组开展了多次水质监测,NH3-N稳定达到地表Ⅱ类水标准(湖泊标准)[29],COD稳定达到地表Ⅲ类水标准(湖泊标准)[29],南湖(除下游海盐塘出口外)大部分区域TP指标基本达到了地表Ⅱ类水标准(湖泊标准)[29]。为进一步验证工程实施效果,选取工程完工后2021年6月1日至2021年6月24日的6次水质监测数据,汇总后取平均值,进行分析讨论。各监测点、对照点位置分布及具体水质监测数据如图6表2所示。为了验证超磁分离一体化设备对土工管袋干化后的尾水处理效果,对尾水水质进行了监测,监测数据如表3所示。

    图 6  南湖水质监测取样点示意图
    Figure 6.  Schematic diagram of sampling point for water quality monitoring in Nanhu lake
    表 2  南湖水质监测数据平均值
    Table 2.  Average value of water quality monitoring data of Nanhu lake
    取样点位浊度/NTUCOD/(mg·L−1)NH3-N/(mg·L−1)TP/(mg·L−1)叶绿素a/(μg·L−1)SS/(mg·L−1)TN/(mg·L−1)
    1号点3140.3010.0118132.69
    2号点3130.3370.0128132.74
    3号点3160.3180.01112122.55
    4号点3170.2710.0189162.71
    5号点4180.1970.01611132.47
    6号点4130.0820.01716141.84
    7号点4140.0560.01711141.75
    8号点7180.1260.02218242.43
    9号点3150.0600.01616142.12
    10号点3130.0970.01415142.20
    11号点10160.1100.03820262.54
    12号点11160.1100.03921292.54
    13号点8130.1110.02632192.44
    14号点14180.1410.06013322.59
    对照点A16140.4850.14917282.48
    对照点B22170.2920.16110422.98
     | Show Table
    DownLoad: CSV
    表 3  疏浚土干化尾水水质监测数据
    Table 3.  Monitoring indicators of tail water quality from dredged soil drying
    日期COD/(mg·L−1)NH3-N /(mg·L−1)SS/(mg·L−1)pH磷酸盐/(mg·L−1)
    2021-01-01211.93<47.560.02
    2021-01-07171.84<47.470.04
    2021-01-14141.92<47.390.05
    2021-01-21201.84<47.440.04
     | Show Table
    DownLoad: CSV

    表2可以看出,河道1号点为超磁分离一体化设备出水口(最终入水系位置),对照点A靠近超磁分离一体化设备取水口,对照点A和河道1号点分别位于长盐塘钢坝的上/下游,通过水量调控措施(长盐塘钢坝)分隔开。2处位置的水质数据分析结果表明:1)超磁分离一体化设备出水浊度可以维持在3 NTU左右,与项目组对超磁设备直接出水的浊度每日监测数据基本一致;2)超磁分离一体化设备可以显著去除水体中的TP(去除率为92.61%),对NH3-N(去除率为37.94%)也有一定的去除作用,但是对TN、COD等的去除不明显。

    通过对沉水植物种植区域悬浮物质量浓度进行对比分析可以看出,湖区沉水植物种植区(6、9、10、13号点)的悬浮物平均质量浓度15.25 mg·L−1明显低于湖区其他区域(8、11、12号点)的平均质量浓度26.33 mg·L−1,沉水植物种植区域悬浮物下降比值为42.09%。这表明沉水植物对水体中悬浮物具有明显的吸附作用。项目组利用水下摄像机对沉水植物进行观察也发现,植物叶片上附着了大量的悬浮性颗粒物。因此,通过沉水植物吸附、收割打捞、生长、吸附这一循环过程,能够实现水中悬浮物的转移去除。

    表2可以看出,南湖下游平湖塘出口位置(14号点)TP指标明显优于平湖塘位置(对照点B)。这表明现有工程治理措施及沉水植物系统已发挥一定的作用,但是悬浮物质量浓度和浊度改善效果不明显。因此,项目团队在南湖下游小瀛洲出口位置布置了流量计,对出入湖流量进行了监测。监测数据表明每天仍有大量的浊水通过下游出口进入南湖。这可能是由于嘉兴南湖水系仍受到不规则半日潮每天2次涨潮所带来的水流顶托的影响,对南湖正常的清水补给、置换产生了一定的削弱。

    表3可以看出,土工管袋干化后的尾水经4次检测,悬浮物SS均不超过4 mg·L−1,优于《污水综合排放标准》(GB 8978-1996)一级A标准10 mg·L−1的要求,实现了疏浚土尾水的达标排放。

    南湖生态环境修复工程(一期)项目完工后,湖区大部分水体透明度已达到80 cm以上(图7),湖区水体颜色由黄色变为浅绿色,重现了嘉兴南湖“秀水泱泱”的美丽画卷(图8图9)。由南湖水体透明度的监测数据和湖区感官效果改善情况可以看出: 1)南湖水系水体透明度沿两条清水入湖路线“长盐塘→蒋水港→壕股塔→平湖塘出口”和“长盐塘→七一广场→金谷桥港→壕股塔→平湖塘出口”呈下降趋势,表明在项目治理前期(水养草阶段),超磁分离一体化设备的清水补给是南湖水系透明度提升的关键; 2)南湖平湖塘出口区域的透明度仅有20 cm,表明每天涨潮流潮汐顶托进入南湖的浊水对靠近出口区域的水体透明度影响很大。

    图 7  南湖水体治理后透明度监测(2021年12月5日实测值)
    Figure 7.  Transparency monitoring of Nanhu water body after treatment (measured value on December 5, 2021)
    图 8  南湖湖区治理前后实景
    Figure 8.  Real scene of Nanhu lake area before and after governance
    图 9  壕股塔区域治理前后实景
    Figure 9.  Real scene of the trench tower area before and after governance

    1)在现有工程措施的基础之上,如果能在南湖出口位置修建水量调控措施(如翻板式钢坝闸或橡胶坝),将南湖水系完全封闭,并通过水量和水位的精细化调控,可能会进一步提升南湖水体透明度,且可以减少超磁分离一体化设备处理量并大幅缩减设备的运维成本。

    2)超磁一体化设备购置费用和运维成本偏高,仍需针对不同水环境项目选择性价比更优的处理设备。

    3)南湖由于不能降水作业,沉水植物种植方式受限,故只能采用水上抛投方式,这导致沉水植物成活率偏低。在沉水植物种植条件允许的情况下,利用抽水作业进行浅水扦插种植仍是施工综合效率高、成活率高、造型美观的最佳种植方式。

    4)通过无人机航拍视频发现,游船航经区域呈现明显的“浑浊带”,表明船行波对底泥扰动造成的底泥再悬浮作用非常明显。如果能对南湖游船进行“电动化改造”、减小吃水深度,或者通过管理手段控制航行频次和航行速度,可能会更加有利于湖区水体透明度的改善。

    1)嘉兴南湖生态环境修复工程(一期)项目完工后,水质监测结果表明,南湖主要水质指标(COD、NH3-N、TP)基本达到地表水Ⅲ类(湖泊标准),湖区大部分区域水体透明度达到80 cm以上,水体颜色由黄色变为浅绿色。由此可以看出,南湖生态环境修复的整理思路和技术路线是可行的。

    2)超磁分离一体化设备适合在城市核心区处理高浊度水体,可以显著去除水体中的TP(去除率为92.61%),对NH3-N(去除率为37.94%)也有一定的去除作用,但是对TN、COD等的去除不明显。

    3)以“沉水植物”为主体的水下森林生态系统对悬浮型颗粒物具有明显的去除作用,沉水植物种植区域悬浮物下降了42.09%。同时,在沉水植物养护阶段,应及时进行补种、收割、打捞,并通过沉水植物品种的搭配保证四季常绿,以确保沉水植物的长效净化作用。

    4)湖区疏浚采用环保绞吸疏浚与土工管袋干化相结合的技术,减少了疏浚过程中的底泥再悬浮,土工管袋干化后的尾水采用超磁分离一体化设备二次处理,悬浮物SS指标均不超过4 mg·L−1,实现了疏浚土尾水的达标排放。

  • 图 1  催化剂活性评价装置流程

    Figure 1.  Flow chart of catalyst activity evaluation device

    图 2  离子交换法与等体积浸渍法制备催化剂催化活性对比

    Figure 2.  Comparison of catalytic activity among catalysts prepared by ion exchange and incipient wetness impregnation method

    图 3  不同方法制备的催化剂XRD谱图

    Figure 3.  XRD patterns of catalyst prepared by different methods

    图 4  3种硅铝比HZSM-5载体XRD谱图

    Figure 4.  XRD patterns of HZSM-5 carriers with three silica-alumina ratios

    图 5  不同硅铝比Cu8/HZSM-5催化剂XRD谱图

    Figure 5.  XRD patterns of Cu8/HZSM-5 catalysts with different silica-alumina ratios

    图 6  不同硅铝比的Cu8/HZSM-5的SEM谱图

    Figure 6.  SEM images of Cu8/HZSM-5 with different silica to alumina ratios

    图 7  不同硅铝比Cu8/HZSM-5的NH3-TPD图

    Figure 7.  NH3-TPD profiles of Cu8/HZSM-5 with different silica-alumina ratios

    图 8  不同硅铝比下Cu8/HZSM-5的H2-TPR图

    Figure 8.  H2-TPR profiles of Cu8/HZSM-5 with different silica-alumina ratios

    图 9  等体积浸渍法制备Cu8/HZSM-5催化剂反应活性

    Figure 9.  Activity evaluation of Cu8/HZSM-5 catalyst prepared by incipient wetness impregnation method

    图 10  硅铝比为27的Cu8/HZSM-5水热稳定性实验

    Figure 10.  Hydrothermal stability experiment of Cu8/HZSM-5 with a silica to alumina ratio of 27

    图 11  不同硅铝比Cu8/HZSM-5催化剂寿命实验

    Figure 11.  Life test of Cu8/HZSM-5 catalyst with different silica-alumina ratios

    表 1  催化分解反应过程中不同N2O分解转化率对应的反应温度

    Table 1.  Reaction temperature corresponding to N2O decomposition andconversion rate during catalytic decomposition reaction

    制备方法催化剂硅铝比(Si/Al)温度T10/℃温度T50/℃温度T99/℃
    离子交换法Cu2/ZSM-527491521555
    离子交换法Cu8/ZSM-527404440476
    离子交换法Cu8/ZSM-550408440487
    离子交换法Cu8/ZSM-5117462550635
    等体积浸渍法Cu2/HZSM-527378405427
    等体积浸渍法Cu8/HZSM-527355380400
    等体积浸渍法Cu8/HZSM-550370390410
    等体积浸渍法Cu8/HZSM-5117375405440
      注:T10T50T99分别表示N2O分解率达到10%、50%、99%时对应的反应温度。
    制备方法催化剂硅铝比(Si/Al)温度T10/℃温度T50/℃温度T99/℃
    离子交换法Cu2/ZSM-527491521555
    离子交换法Cu8/ZSM-527404440476
    离子交换法Cu8/ZSM-550408440487
    离子交换法Cu8/ZSM-5117462550635
    等体积浸渍法Cu2/HZSM-527378405427
    等体积浸渍法Cu8/HZSM-527355380400
    等体积浸渍法Cu8/HZSM-550370390410
    等体积浸渍法Cu8/HZSM-5117375405440
      注:T10T50T99分别表示N2O分解率达到10%、50%、99%时对应的反应温度。
    下载: 导出CSV

    表 2  不同方法制备的催化剂中活性组分CuO的差异

    Table 2.  Differences of active component CuO in catalysts prepared by different methods

    制备方法催化剂(Si/Al=27)Cu(NO3)2·3H2O质量/g去离子水/mL浓度/(mol·L−1)催化剂中CuO含量/%
    理论值XRF测量结果
    等体积浸渍法Cu2/HZSM-50.30230.422.2
    等体积浸渍法Cu8/HZSM-51.21631.7810.9
    等体积浸渍法Cu16/HZSM-52.43033.31619.6
    等体积浸渍法Cu26/HZSM-53.94935.42627.4
    离子交换法Cu2/ZSM-50.3022000.00621.1
    离子交换法Cu8/ZSM-51.2162000.02581.9
    离子交换法Cu16/ZSM-52.4302000.051162.3
    离子交换法Cu26/ZSM-53.9492000.082262.2
      注:T10T50T99分别表示N2O分解率达到10%、50%、99%时对应的反应温度。
    制备方法催化剂(Si/Al=27)Cu(NO3)2·3H2O质量/g去离子水/mL浓度/(mol·L−1)催化剂中CuO含量/%
    理论值XRF测量结果
    等体积浸渍法Cu2/HZSM-50.30230.422.2
    等体积浸渍法Cu8/HZSM-51.21631.7810.9
    等体积浸渍法Cu16/HZSM-52.43033.31619.6
    等体积浸渍法Cu26/HZSM-53.94935.42627.4
    离子交换法Cu2/ZSM-50.3022000.00621.1
    离子交换法Cu8/ZSM-51.2162000.02581.9
    离子交换法Cu16/ZSM-52.4302000.051162.3
    离子交换法Cu26/ZSM-53.9492000.082262.2
      注:T10T50T99分别表示N2O分解率达到10%、50%、99%时对应的反应温度。
    下载: 导出CSV

    表 3  催化剂的比表面积与X荧光光谱分析结果

    Table 3.  Specific surface area and X-ray fluorescence spectrum analysis results of the catalyst

    催化剂硅铝比(Si/Al)比表面积/(m2·g−1)X荧光光谱分析结果
    SiO2质量分数/%Al2O3质量分数/%实测硅铝比(Si/Al)理论硅铝比(Si/Al)
    HZSM-52727795.83.626.827
    HZSM-550263103.52.148.950
    HZSM-5117257149.81.3118.8117
    Cu8/HZSM-527237
    Cu8/HZSM-550220
    Cu8/HZSM-5117219
    催化剂硅铝比(Si/Al)比表面积/(m2·g−1)X荧光光谱分析结果
    SiO2质量分数/%Al2O3质量分数/%实测硅铝比(Si/Al)理论硅铝比(Si/Al)
    HZSM-52727795.83.626.827
    HZSM-550263103.52.148.950
    HZSM-5117257149.81.3118.8117
    Cu8/HZSM-527237
    Cu8/HZSM-550220
    Cu8/HZSM-5117219
    下载: 导出CSV
  • [1] FIELD C B, DUKES J S, LUO Y, et al. Atmospheric science: Nitrogen and climate change[J]. Science, 2003, 302(5650): 1512-1513. doi: 10.1126/science.1091390
    [2] 郭慧雯, 张哲男, 孙世昌, 等. A/O工艺N2O的产生与释放的影响因素[J]. 环境工程学报, 2014, 8(6): 2515-2522.
    [3] RUSSO N, MESCIA D, FINO D, et al. N2O Decomposition over perovskite catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4226-4231.
    [4] 李宁. N2O分解催化剂的制备[J]. 化工进展, 2007, 26(11): 1659-1661. doi: 10.3321/j.issn:1000-6613.2007.11.027
    [5] ZHANG X, SHEN Q, HE C, et al. Decomposition of nitrous oxide over Co-zeolite catalysts: Role of zeolite structure and active site[J]. Catalysis Science & Technology, 2012, 2(6): 1249-1258.
    [6] LI Y J, ARMOR J N. Catalytic decomposition of nitrous oxide on metal exchanged zeolites[J]. Cheminform, 2010, 24(1): 21-29.
    [7] NOBUKAWA T, YOSHIDA M, OKUMURA K, et al. Effect of reductants in N2O reduction over Fe-MFI catalysts[J]. Journal of Catalysis, 2005, 229(2): 374-388. doi: 10.1016/j.jcat.2004.11.009
    [8] IWAMOTO M, FURUKAWA H, MINE Y, et al. Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. Journal of the Chemical Society Chemical Communications, 1986, 16(16): 1272-1273. doi: 10.1039/c39860001272
    [9] ABU-ZIED B M, SCHWIEGER W, ANDRE U. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 277-288. doi: 10.1016/j.apcatb.2008.04.004
    [10] SMEETS P, GROOTHAERT M, VANTEEFFELEN R, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: Elucidating the influence of the Cu-Cu distance on oxygen migration[J]. Journal of Catalysis, 2007, 245(2): 358-368. doi: 10.1016/j.jcat.2006.10.017
    [11] 张志红, 何晓囡, 金俏, 等. 分光光度法测定ZMS-5分子筛催化剂中的硅[J]. 北京石油化工学院学报, 2010, 18(3): 43-46. doi: 10.3969/j.issn.1008-2565.2010.03.010
    [12] 程火生. 辽阳石化己二酸生产中N2O减排技术应用研究[D]. 北京: 清华大学, 2010.
    [13] 潘惠芳, 周世新, 张在龙, 等. 第一性晶粒大小与催化活性的关系: 最适宜的分散度[J]. 华东石油学院学报(自然科学版), 1985, 27(2): 54-59.
    [14] 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
    [15] OLSON D H, HAAG W O, LAGO R M. Chemical and physical properties of ZSM-5 substitutional series[J]. Journal of Catalysis, 1980, 61(2): 390-396. doi: 10.1016/0021-9517(80)90386-3
    [16] XIE P F, MA Z, ZHOU H B, et al. Catalytic decomposition of N2O over Cu-ZSM-11 catalysts[J]. Microporous and Mesoporous Materials, 2014, 191: 112-117. doi: 10.1016/j.micromeso.2014.02.044
    [17] TSAI M L, HADT R G, VANELDEREN P, et al. [Cu2O]2+active site formation in Cu-ZSM-5:Geometric and electronic structure requirements for N2O activation[J]. Journal of the American Chemical Society, 2014, 136(9): 3522-3529. doi: 10.1021/ja4113808
    [18] 孙慧勇, 胡津仙, 王建国, 等. 小晶粒 Fe-ZSM-5分子筛合成过程中晶粒大小和分布的控制[J]. 石油化工, 2001, 30(3): 188-192. doi: 10.3321/j.issn:1000-8144.2001.03.004
    [19] 王幸宜. 催化剂表征[M].上海: 华东理工大学出版社, 2008.
    [20] 张进, 肖国民. ZSM-5型分子筛的表面酸性与催化活性[J]. 分子催化, 2002, 16(4): 307-311. doi: 10.3969/j.issn.1001-3555.2002.04.014
    [21] LEE D K. Quantification and redox property of the oxygen-bridged Cu2+, dimers as the active sites for the NO decomposition over Cu-ZSM-5 catalysts[J]. Korean Journal of Chemical Engineering, 2004, 21(3): 611-620. doi: 10.1007/BF02705495
    [22] LI Y, FENG Z C, XIN H C, et al. Effect of aluminum on the nature of the iron species in Fe-SBA-15[J]. Journal of Physical Chemistry B, 2006, 110(51): 26114-26121. doi: 10.1021/jp0657641
    [23] 李富霞, 任晓光, 李鹏, 等. 焙烧条件对CuO/ZSM-5催化剂脱硫脱硝性能的影响[J]. 环境工程学报, 2013, 7(8): 3117-3122.
    [24] 曹原, 刘连军, 姚志建, 等. 氧化铜物种分散状态对NO还原活性的影响[C]//中国稀土协会催化专业委员会. 全国稀土催化学术会议, 2010: 130-131.
    [25] MENG T, REN N, MA Z. Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition[J]. Chinese Journal of Chemical Engineering, 2018, 23(5): 1051-1058. doi: 10.1016/j.cjche.2018.02.015
    [26] ZOU W, XIE P F, HUA W M, et al. Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets[J]. Journal of Molecular Catalysis A: Chemical, 2014, 394: 83-88. doi: 10.1016/j.molcata.2014.07.004
    [27] 卢仁杰, 张新艳, 郝郑平. 不同硅铝比Fe-ZSM-5催化剂对氧化亚氮催化分解性能的研究[J]. 环境科学, 2014, 35(1): 371-379.
    [28] OBALOVA L, FILA V. Kinetic analysis of N2O decomposition over calcined hydrotalcites[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 353-359. doi: 10.1016/j.apcatb.2005.11.031
    [29] TERAOKA Y, TAI C, OGAWA H, et al. Characterization and NO decomposition activity of Cu-MFI zeolite in relation to redox behavior[J]. Applied Catalysis A: General, 2000, 200(1): 167-176. doi: 10.1016/S0926-860X(00)00631-1
    [30] 朱洪法. 催化剂载体制备及应用技术[M]. 北京: 石油工业出版社, 2014.
    [31] 崔乃云. 超低硅铝比ZSM-5分子筛的合成与表征[D]. 青岛: 中国石油大学(华东), 2014.
    [32] PEREZ-RAMIREZ J, KAPTEIJN F, SCHOFFEL K, et al. Formation and control of NO in nitric acid production[J]. Applied Catalysis B: Environmental, 2003, 44(2): 117-151. doi: 10.1016/S0926-3373(03)00026-2
    [33] PEREZ-RAMIREZ J. Prospects of N2O emission regulations in the European fertilizer industry[J]. Applied Catalysis B: Environmental, 2007, 70(1): 31-35. doi: 10.1016/j.apcatb.2005.11.019
    [34] 仇杨君. 催化分解N2O催化剂制备及中试条件研究[D]. 北京: 北京石油化工学院, 2018.
    [35] 马帅, 陆强, 蔺卓玮, 等. CuO-ZnO/γ-A12O3催化剂分解N2O的性能研究[J]. 动力工程学报, 2017, 37(9): 732-737.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.1 %DOWNLOAD: 3.1 %HTML全文: 85.1 %HTML全文: 85.1 %摘要: 11.8 %摘要: 11.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 79.4 %其他: 79.4 %Anwo: 0.1 %Anwo: 0.1 %Ashburn: 0.3 %Ashburn: 0.3 %Beijing: 8.9 %Beijing: 8.9 %Brooklyn: 0.2 %Brooklyn: 0.2 %Calgary: 0.1 %Calgary: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chengdu: 0.1 %Chengdu: 0.1 %Chicago: 0.2 %Chicago: 0.2 %Chongqing: 0.1 %Chongqing: 0.1 %College Station: 0.1 %College Station: 0.1 %Dali Baizu Zizhizhou: 0.3 %Dali Baizu Zizhizhou: 0.3 %Diamond Bar: 0.1 %Diamond Bar: 0.1 %Dongguan: 0.1 %Dongguan: 0.1 %Guangzhou: 0.4 %Guangzhou: 0.4 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.6 %Hangzhou: 0.6 %Hechi: 0.1 %Hechi: 0.1 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 1.0 %Jinrongjie: 1.0 %Kunshan: 0.1 %Kunshan: 0.1 %Linyi: 0.2 %Linyi: 0.2 %Mechelen: 0.1 %Mechelen: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Nanjing: 0.1 %Nanjing: 0.1 %Nanning: 0.1 %Nanning: 0.1 %Newark: 0.2 %Newark: 0.2 %Paris: 0.1 %Paris: 0.1 %Qingdao: 0.3 %Qingdao: 0.3 %Shanghai: 0.8 %Shanghai: 0.8 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.2 %Shenzhen: 0.2 %Taiyuan: 0.2 %Taiyuan: 0.2 %Tianjin: 0.1 %Tianjin: 0.1 %Xi'an: 0.1 %Xi'an: 0.1 %Xiangtan: 0.1 %Xiangtan: 0.1 %XX: 3.9 %XX: 3.9 %Yantai: 0.1 %Yantai: 0.1 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.2 %Zhengzhou: 0.2 %上海: 0.1 %上海: 0.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.2 %北京: 0.2 %大连: 0.1 %大连: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %运城: 0.1 %运城: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AnwoAshburnBeijingBrooklynCalgaryChangshaChengduChicagoChongqingCollege StationDali Baizu ZizhizhouDiamond BarDongguanGuangzhouGuangzhou ShiGulanHangzhouHechiJinanJinrongjieKunshanLinyiMechelenMountain ViewNanjingNanningNewarkParisQingdaoShanghaiShenyangShenzhenTaiyuanTianjinXi'anXiangtanXXYantaiYunchengZhengzhou上海东莞临汾内网IP北京大连济南深圳运城阳泉Highcharts.com
图( 11) 表( 3)
计量
  • 文章访问数:  6515
  • HTML全文浏览数:  6515
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-18
  • 录用日期:  2019-09-27
  • 刊出日期:  2020-06-01
徐庆生, 宋永吉, 刘久欣, 王新承, 李翠清, 王虹. 催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响[J]. 环境工程学报, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
引用本文: 徐庆生, 宋永吉, 刘久欣, 王新承, 李翠清, 王虹. 催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响[J]. 环境工程学报, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
XU Qingsheng, SONG Yongji, LIU Jiuxin, WANG Xincheng, LI Cuiqing, WANG Hong. Effect of silica-alumina ration of Cu/HZSM-5 catalyst on N2O catalytic decomposition[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103
Citation: XU Qingsheng, SONG Yongji, LIU Jiuxin, WANG Xincheng, LI Cuiqing, WANG Hong. Effect of silica-alumina ration of Cu/HZSM-5 catalyst on N2O catalytic decomposition[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1579-1591. doi: 10.12030/j.cjee.201908103

催化剂Cu/HZSM-5的硅铝比对催化分解N2O的影响

    通讯作者: 宋永吉(1963—),男,博士,教授。研究方向:环境减排催化剂等。E-mail:songyongji@bipt.edu.cn
    作者简介: 徐庆生(1994—),男,硕士研究生。研究方向:环境催化、气体污染物治理。E-mail:18766953682@163.com
  • 1. 北京石油化工学院化学工程学院,燃料清洁化及高效催化减排技术北京市重点实验室,北京 102617
  • 2. 北京工业大学环境与能源工程学院,北京 100124
基金项目:
国家自然科学基金资助项目(20176012,21076025)

摘要: 为系统研究Cu/HZSM-5硅铝比对其各类性能的影响,采用等体积浸渍法与离子交换法,以硅铝比为27、50、117的HZSM-5为载体,制备负载型N2O催化分解催化剂Cu/HZSM-5和Cu/ZSM-5,催化剂的活性组分为CuO。通过催化剂反应活性评价、X射线荧光光谱分析、X射线衍射分析结果,对2种方法制备催化剂活性的差异进行了分析。利用比表面积孔径分析仪(BET)、X射线衍射分析(XRD)、场发射扫描电镜(SEM)、X射线荧光光谱分析(XRF)、氢气程序升温还原分析(H2-TPR)、氨气程序升温脱附分析(NH3-TPD)等表征手段对催化剂物化性质等进行分析,得到载体HZSM-5的硅铝比差异对催化剂特征结构、比表面积、特征形貌、酸性位数量、可还原性能的影响规律。等体积浸渍法制备的催化剂活性评价结果表明,硅铝比为27的Cu8/HZSM-5催化剂活性最好,完全催化分解N2O的温度在400 ℃左右。水热稳定性实验结果以及寿命实验结果表明,硅铝比为27的Cu8/HZSM-5具有良好的水热稳性,3种硅铝比的Cu8/HZSM-5催化剂均具备良好的热稳定性。Cu/HZSM-5的活性评价以及各种表征结果显示,在一定范围内,硅铝比越低,催化剂活性越好。

English Abstract

  • 氧化亚氮(N2O)是一种重要的温室气体,在很长的时间里,人们对于温室气体的关注往往集中在CO2上,由于N2O在大气中浓度较小,对人体没有明显的毒害作用,加上其无色等物理性质,人们对其关注度不高,处于被人们忽略的状态。但是其全球变暖潜能值(GWP)比二氧化碳(CO2)高约300倍,在大气层中的估算寿命约为130年,对全球的温室效应增益效果很大,同时它对臭氧层也有着极大的破坏作用[1]。大气中N2O的来源为自然界自身排放和人类各种工业活动排放2种,其中自然界排放的N2O在全球产生N2O的总量中约占70%以上,其大部分来源于自然环境中微生物的硝化与反硝化作用[2]。对于人类生产活动排放的N2O,根据美国国家海洋和大气管理局(NOAA)发布的模拟研究数据,每年人类生产活动向大气中排放的N2O约为1×108 t,而且还呈现出快速增长的趋势。虽然目前排放的N2O占比较小,但是随着工业的发展,人为源产生的N2O已经使生态系统不堪重负,造成越来越严重的后果。因此,排放量的不断增加使N2O越来越受到关注,故开发有效可行、适用于工业实际生产中处理N2O的方法变得迫在眉睫[3]。现在比较成熟的N2O减排、处理的方法包括N2O再生还原为硝酸、N2O作为原料生产苯酚、高温分解法、直接催化分解法、N2O的选择性催化还原(SCR)。高温分解法处理N2O时要求温度在800 ℃以上,须输入能源,能量消耗大,转化率低且产生二次污染物,不能大规模应用[4]。选择性催化还原须接入氨气等还原剂,增加成本,容易产生氮氧化物等污染物[5]。而直接催化分解法经过研究人员多年的探索研究,已寻找到各种低温条件下催化活性较好的催化剂,因此,被认为是能够实现N2O减排、分解处理N2O最优的方式,目前已经实现工业化。在直接催化分解领域,研究人员进行了大量的研究,寻找了多个系列的催化剂,分别为负载型贵金属催化剂、金属氧化物催化剂、分子筛催化剂。贵金属催化剂活性较好,但是易中毒失活,成本过高,大规模应用前景较差。金属氧化物催化剂稳定性较好,但是催化活性较差。而分子筛催化剂成本较低,而且催化低温活性较高[6],是N2O催化分解研究中一种非常理想的催化剂。

    HZSM-5催化剂作为一种常用的分子筛催化剂,其具有特殊的MFI特征结构,在N2O催化分解中有着重要的地位[7]。IWAMOTO等[8]发现Cu/ZSM-5(Cu2+与分子筛HZSM-5中的H+进行离子交换制备)对NO的催化分解具有活性。随后,其他研究者对各种金属离子特别是过渡金属与稀土金属改性的HZSM-5催化剂进行了研究,结果表明,Cu/ZSM-5在N2O分解过程中比其他过渡金属(Ni,Mn,Pd,Ce,Zn,Cd等)阳离子交换的ZSM-5分子筛具有更高的活性[9]。许多研究者同样对各类分子筛进行了研究,发现Cu/ZSM-5也比其他类型Cu改性分子筛催化剂(例如分子筛FER,MOR,BEA等)具有更高的活性[10]。这些研究结果均表明Cu改性HZSM-5催化剂在N2O催化分解活性方面具有优势。硅铝比是HZSM-5分子筛结构和性能的一个重要影响参数,分子筛的硅铝比可以通过X荧光光谱分析、分光光度法[11]等进行检测。目前,HZSM-5硅铝比对Cu/HZSM-5催化剂N2O催化分解性能的影响未有深入的研究报道。本研究以不同硅铝比的HZSM-5分子筛为载体,制备了Cu/HZSM-5催化剂,实验研究了载体硅铝比对N2O催化分解性能的影响,通过XRD等表征手段对催化剂进行了表征分析,对HZSM-5硅铝比影响催化剂性能的规律进行分析讨论,同时还考察了Cu/HZSM-5催化剂的水热稳定性和寿命。

  • 实验所用的活性组分的前驱体是天津市福晨化学试剂厂生产的Cu(NO3)2·3H2O(分析纯),3种不同硅铝比的HZSM-5载体均购买于南开大学催化剂厂。

  • 首先对分子筛载体进行预处理,把载体HZSM-5置于马弗炉内550 ℃下焙烧4 h,称取5 g的载体,测得其饱和吸水率。前驱体Cu(NO3)2·3H2O的用量依据最终催化剂活性组分CuO负载量来计算。

    催化剂的制备采用等体积浸渍法与离子交换法。等体积浸渍法:选用经预处理的HZSM-5载体5 g,根据饱和吸水量量取一定的去离子水,计算需要的Cu(NO3)2·3H2O并溶解于去离子水,将溶液滴加到载体中,滴加过程中不断用玻璃棒搅拌,保证溶液均匀地被载体吸收,再经过恒温40 ℃,水浴8 h,110 ℃干燥箱内过夜干燥12 h,置于马弗炉内,程序升温550 ℃焙烧4 h,制得催化剂Cu/HZSM-5。离子交换法:选用经预处理的载体5 g与活性组分前驱体,在80 ℃的200 mL去离子水中离子交换24 h,然后抽滤、洗涤,110 ℃干燥箱内过夜干燥12 h,置于马弗炉内程序升温550 ℃焙烧4 h,此过程重复3次,制得催化剂Cu/ZSM-5。2种方法制备的催化剂经过压片分级得到不同粒级的催化剂,取1 mL的20~40 目催化剂进行评价。催化剂的表示方法为Cux/HZSM-5或Cux/ZSM-5,x%表示分子筛上理论计算负载的活性组分CuO质量占载体质量的百分比。

  • 催化剂晶体结构利用X射线衍射(XRD)进行分析,仪器型号为日本岛津公司的XRD-7000型,辐射源选用Cu靶Kα射线,工作电压与电流分别为40 kV和30 mA,扫描角度为10°~80°,扫描速率是4(°)·min−1。催化剂表面形貌采用扫描电子显微镜(SEM)分析,仪器型号为美国FEI公司生产的Quanta-400F,分析时的操作电压为15 kV,分别放大20 000倍和50 000倍。催化剂比表面积(BET)采用美国Micromeritics公司生产的ASAP-2020型比表面积分析仪,在抽真空、300 ℃的条件下预处理4 h,然后利用液氮保持约−196 ℃的低温环境,以N2为吸附气体对催化剂的比表面积进行测定。催化剂的元素种类测定采用荷兰帕纳科公司的PANalytical ZETIUM波长型X荧光光谱仪(XRF),可测量种类为O~U,可测量元素含量为1×10−6~1,光管最大功率为4 kW,高压发生器最大功率是4 kW。

    催化剂的氢气程序升温还原(H2-TPR)分析采用美国Micromeritics公司的Chemisorb-2750型程序升温化学吸附仪,考察催化剂的还原能力。预处理为持续通入N2,在500 ℃条件保持1 h,以确保样品中的水分等杂质完全脱除。待炉温降至20 ℃左右,关闭N2并通入Ar-H2混合气体,氢气的浓度为10%,以8 ℃·min−1的升温速率开始程序加热,最高温度至800 ℃。

    催化剂的氨气程序升温脱附(NH3-TPD)实验同样采用Chemisorb-2750型程序升温化学吸附仪,分析催化剂的酸性。预处理时,持续通入N2,在500 ℃条件保持1 h,确保完全脱除样品上的吸附物质。然后降温至100 ℃,通入稳定流量的N2-NH3混合气体进行吸附,氨气浓度为6%。待吸附饱和后,利用N2吹扫至质谱信号稳定。

    催化剂评价所用的原料配气是基于工业实际条件优化后[12]进行设计的,配气的总流量为100 mL·min−1,空速为6 000 h−1,配气中各种气体的比例(体积分数)分别为N2O 10%、O2 5%。水热稳定性实验时,加入体积分数9%H2O,其余气体以N2作为平衡气。

    N2O催化分解反应实验采用气固相固定床反应装置(WFS-3015),反应器为内径8 mm的石英管,催化剂用量为1 mL,催化剂颗粒尺寸为20~40 目,程序升温加热。反应后,尾气的分析采用GC9890A气相色谱仪,色谱载气为H2,由氮气/氢气/空气一体机提供。催化剂活性评价装置流程如图1所示。

  • 在前期等体积浸渍法实验中,以3种硅铝比HZSM-5为载体,进行不同负载量的实验。硅铝比为27、50、117时,活性最高的Cu/HZSM-5催化剂负载量分别为8%、8%、12%,催化剂反应活性的差异需要在相同负载量下分析,在分析硅铝比时,催化剂负载量均为8%。

    等体积浸渍法与离子交换法是分子筛HZSM-5制备催化剂最常用的2种方法。图2反映了等体积浸渍法制备的Cu/HZSM-5催化剂与离子交换法制备的Cu/ZSM-5催化剂活性评价结果,负载量分别为2%与8%。表1反映了等体积浸渍法与离子交换法制备的催化剂在不同N2O催化分解转化率时对应的反应温度。

    图2可以看出,等体积浸渍法与离子交换法制备的催化剂在N2O催化分解实验中催化活性差异较大。等体积浸渍法制备的活性最佳的催化剂是硅铝比为27的Cu8/HZSM-5,N2O完全分解温度约为400 ℃,活性最差的催化剂是硅铝比为117的Cu8/HZSM-5,N2O完全分解温度约为440 ℃。离子交换法制备的活性最佳催化剂也是硅铝比为27的Cu8/HZSM-5,但是N2O完全分解温度高达476 ℃,活性最差的催化剂为硅铝比为117的Cu8/HZSM-5,N2O完全分解温度约为635 ℃。实验结果表明,等体积浸渍法制备的Cu8/HZSM-5催化剂活性明显高于离子交换法制备的催化剂,但是2种方法制备的催化剂活性均是硅铝比越小,其活性越高。在后面实验中使用的催化剂都采用等体积浸渍法制备。

    为解释不同方法制备的催化剂活性的差异,实验以硅铝比为27的Cu/HZSM-5和Cu/ZSM-5为例,通过XRF分析得到不同样品的CuO含量,结果如表2所示。可以看出,当CuO理论负载量大于2%时,离子交换法制备的催化剂CuO的含量都明显低于理论计算值,硝酸铜浓度(用量)的增加对最终催化剂样品CuO含量影响很小,大约为2%,可能受到离子交换反应平衡的限制。等体积浸渍法制备的催化剂XRF实测值与理论值相近,略大于理论值,由于XRF本身就是半定量分析方法,可能是系统误差的原因造成分析结果的偏差。对于催化剂Cu2/HZSM-5与Cu8/ZSM-5,XRF分析结果表明,2种催化剂上CuO含量均在2%左右;活性评价结果表明,等体积浸渍法制备的Cu2/HZSM-5的温度T99比Cu8/ZSM-5的温度T99低30 ℃。

    为了解活性组分在分子筛上的晶型结构,对不同方法制备的催化剂进行XRD分析。图3为样品的XRD谱图。XRD图谱中2θ为35.6°、38.7°时,所有样品都出现较弱的CuO特征衍射峰,峰型不尖锐,说明CuO在催化剂载体上的分散度较高,没有形成明显的氧化铜晶体。对于等体积浸渍法制备的Cu8/HZSM-5和Cu16/HZSM-5样品,虽然Cu16/HZSM-5的活性组分含量高于Cu8/HZSM-5,但XRD谱图表明,Cu8/HZSM-5上CuO的分散更好,可能处于最佳点[13],催化剂上活性位点数量接近最高值,催化剂催化效率高。离子交换法制备的催化剂也没有CuO特征衍射峰的出现,但是XRF分析结果已经表明它们的CuO负载量过低,活性位点数目有限,故催化活性较低。

  • 不同硅铝比的HZSM-5分子筛载体的XRD谱图如图4所示,表3是催化剂载体和Cu8/HZSM-5催化剂的比表面积和元素组成的分析结果。X荧光光谱分析结果表明,3种HZSM-5载体的硅铝比为26.8、48.9、118.7,与理论结果基本一致。分子筛ZSM-5属于正交晶系,具有特殊的Na+n(H2O)16[AlnSi96-nO192]-MFI结构[14],HZSM-5硅铝比变化即骨架结构中硅铝含量的变化。由图4可知,对于硅铝比为27、50、117的3种分子筛,在2θ为7.97°、8.83°、23.20°、23.85°、24.38°时,分别对应MFI结构的特征衍射峰。结合XRF结果可知,硅铝比升高,HZSM-5骨架结构中Al的含量会有很大的降低。由图4可知,随着硅铝比的增加,MFI特征衍射峰的峰强也会有变化,特别是(011)、(200)晶面2个特征衍射峰随硅铝比的增大而增强。HZSM-5骨架结构中硅铝含量可变范围较大,理论上可以得到不含铝的纯二氧化硅HZSM-5[15],这意味着可以调整HZSM-5的硅铝比以满足不同的实验条件。

    图5为不同硅铝比的Cu8/HZSM-5分子筛催化剂的XRD谱图,从图谱中可以判断,Cu物种的加入并没有改变HZSM-5的骨架结构,依然有明显的MFI结构特征衍射峰出现。对于硅铝比为117和50的Cu8/HZSM催化剂,在XRD图谱中有明显的CuO衍射峰,而在硅铝比为27的Cu8/HZSM-5催化剂上,同样的负载量下并没有出现明显的CuO特征衍射峰,这是因为CuO在硅铝比为27的HZSM-5上具有更好的分散度。对于负载型催化剂,活性组分在载体上的负载量会影响活性组分的分散度,而对于催化剂本身,最适宜的分散度对应的负载量往往是催化剂活性的最佳点[13]。所以负载量相同时,硅铝比为50与117的Cu8/HZSM-5均出现结晶;而硅铝比为27的Cu8/HZSM-5没有明显的结晶峰,这证明了硅铝比较低的Cu8/HZSM-5催化剂拥有更多的Cu物种活性位点[16-17],制备的催化剂活性较高。

  • 图6是3种硅铝比Cu8/HZSM-5在20 000倍和50 000倍下扫描的电镜谱图。图6(a)图6(c)图6(e)3种催化剂的SEM谱图(20 000倍)表明,随载体硅铝比的提高,分子筛结构的小晶粒数量有增加的趋势。图6(b)图6(d)图6(f)3种催化剂SEM谱图(50 000倍)表明,3种不同硅铝比的分子筛依然保持清晰完整的形貌和较好的结晶度。XRD谱图分析结果显示,催化剂具有明显的MFI结构的特征衍射峰,两者的表征结果一致。同时通过Cu8/HZSM-5催化剂50 000倍SEM谱图照片看出,随着载体硅铝比的增大,分子筛中颗粒聚集现象并不严重。所以2个系列催化剂随着硅铝比的增大,比表面积变小,主要原因是分子筛载体,催化剂表面自由焓降低使体系趋于稳定,导致催化剂的活性变差[18]

    在分子筛HZSM-5骨架中,Si与Al之间通过氧桥连接,由于Al—O键比Si—O键长,故HZSM-5骨架结构中晶胞体积因为硅铝比增大而变小[19],从而比表面积减小,影响催化剂的活性。由表3中比表面积的测定结果分析可知,3种硅铝比的HZSM-5比表面积虽有差异,但是比较接近,这与分子筛HZSM-5本身具有的高比表面积的性质有关。比表面积虽对催化剂的活性有影响,但并不起决定作用,还与分子筛骨架Al含量、活性组分及其含量等因素有关。

  • 图7是3种不同硅铝比Cu8/HZSM-5催化剂的NH3-TPD分析结果。可以看出,在温度为200~300 ℃的低温段与500 ℃以上的高温段均出现了明显的NH3脱附峰。低温段对应着催化剂的弱酸位,高温段对应着催化剂的强酸位。对于Cu8/HZSM-5催化剂,Cu物种负载量相同,分子筛载体的质量相同,但是随着硅铝比的提高,NH3脱附峰的面积逐渐减小,这证明催化剂酸性中心的数量因硅铝比的增大而减少。

    对于以HZSM-5为载体制备的催化剂,其催化活性与分子筛结构中酸中心的数量有很大的关系。随着分子筛的硅铝比的增大,骨架结构中铝的含量减少,酸性位数量降低,从而使催化的活性有所下降[20]。由Cu8/HZSM-5催化剂NH3-TPD分析结果可知,随着载体硅铝比的变化,骨架结构中Al的含量发生变化,从而影响催化剂中酸性位点的数量,进一步影响催化剂的活性。

  • 图8是3种不同硅铝比Cu8/HZSM-5催化剂的H2-TPR分析结果。Ⅰ号还原峰与Ⅱ号还原峰的温度因载体硅铝比的升高而升高。Cu8/HZSM-5催化剂的第1个还原峰为Cu与O的二聚体[Cu-O-Cu]2+的吸收峰,[Cu-O-Cu]2+还原生成Cu+。第2个还原峰为催化剂的活性组分CuO的吸收峰,Cu2+与H2在高温的作用下被还原成Cu+,进而至Cu0[16,21]。而图8中硅铝比为50的Cu8/HZSM-5催化剂出现了第3个还原峰。这可能是因为催化剂中活性组分CuO存在2种状态:一种是HZSM-5表面较活泼的表相CuO,与载体之间存在协同作用,HZSM-5中Al含量的增大,会增加表相CuO的数量[22];另一种是处于一种相对稳定状态的体相CuO,可还原性降低,在催化剂中表现出较差的活性[23]。在H2-TPR实验中,由于Cu8/HZSM-5催化剂中体相CuO的存在,高温处会出现还原峰[24]。在H2-TPR谱图中,体相CuO的还原峰在硅铝比为50的催化剂中较为明显,而硅铝比为27与117的Cu8/HZSM-5催化剂中主要以表相CuO为主,体相CuO的数量较少,高温处未出现还原峰。

    在Cu8/HZSM-5的H2-TPR分析实验中,硅铝比对催化剂的可还原性的影响有明显的规律。3种不同硅铝比的催化剂,随硅铝比的提高,对应催化剂的还原峰温度逐渐升高,即催化剂中Cu物种的可还原性降低。分子筛骨架中Al含量对催化剂的活性有很大的影响[14],在氢气程序升温还原分析中,不同硅铝比的Cu8/HZSM-5催化剂因较大的Al含量差异,使还原峰的温度随着硅铝比的升高而提高,使得催化剂中活性组分Cu2+与Cu+物种的可还原性逐渐变差。

  • 本研究考察了催化剂硅铝比的优化效果。图9反映了等体积浸渍法制备的不同硅铝比Cu8/HZSM-5催化剂活性评价结果。由催化剂活性评价曲线可以看出,本实验中硅铝比为27的Cu8/HZSM-5催化剂N2O完全催化分解的温度为400 ℃,而目前在HZSM-5催化剂催化分解N2O的研究中,N2O完全分解时温度大约在470~530 ℃[25-27],这说明本实验制备的催化剂活性有较大的提高。

    表1所示,相同负载量下,硅铝比为27、50、117的3种Cu8/HZSM-5催化剂的起活温度T10T50以及完全分解温度T99均低于硅铝比为50、117的Cu8/HZSM-5催化剂。特别是硅铝比差异较大的催化剂,即硅铝比为27的Cu8/HZSM-5催化剂在400 ℃左右完成N2O的完全催化分解,与硅铝比为117的Cu8/HZSM-5催化剂相比,差距在40 ℃左右。N2O催化分解反应过程[28]如式(1)~式(4)所示(式中·代表Cu物种的活性位点)。

    活性差异的原因是催化剂中Cu物种的活性位点数量不同。硅铝比升高,催化剂中活性位点的数量就会减少,这与Cu8/HZSM-5的XRD图谱分析结果一致。在N2O分解(式(3)和式(4))过程中,Cu物种活性位点数量的增多,促进了吸附氧的脱附过程,生成氧气,促进了N2O的催化剂分解[11, 29],与表面催化反应机理相符。N2O分解过程中吸附氧的脱附能力是衡量催化剂催化性能的重要标准。

    在N2O分解实验中,Cu8/HZSM-5硅铝比越低,催化活性越好,但是并不能依靠降低硅铝比来提高催化剂的活性。由图9看出,硅铝比为18的Cu8/HZSM-5催化剂在N2O催化分解反应中,N2O分解率达到99%,温度在450 ℃左右,高于其他3种硅铝比的Cu8/HZSM-5催化剂。这可能是因为HZSM-5硅铝比过低,会严重降低HZSM-5本身的抗热、抗酸、抗水蒸汽性能,造成催化剂活性的降低,因此,不可随意地降低HZSM-5的硅铝比[30]。同时在分子筛HZSM-5制备过程中,投料硅铝比较高时,晶化条件可以在较宽的范围内调节;投料硅铝比低于25时,易得到无定型产物或生成杂晶[31],增加了制备难度,提高了生产成本。综合考虑,选用硅铝比为27的HZSM-5为进一步实验的催化剂载体。

    图10为硅铝比27的Cu8/HZSM -5催化剂水热稳定性实验结果。水热稳定性实验在3.5 h时通入水蒸气,汽化温度为260 ℃,在13 h时撤去水蒸气。

    已二酸以及硝酸的工厂是工业生产中N2O的主要来源[32-33],而在实际生产中排放N2O的同时会伴有一定的水蒸气,因此,催化剂的耐水性直接决定了催化剂是否能够在实际生产中应用。图10反映了硅铝比为27的Cu8/HZSM-5催化剂在含水蒸气条件下催化剂的活性评价结果。可以看出,在4种温度下,未通入水蒸气时,催化剂活性均较高,N2O分解率保持在99%以上。在通入水蒸气之后,400 ℃下N2O的分解率出现明显下降,稳定在50%~60%。420 ℃下通入水蒸气,催化活性同样出现明显下降,下降幅度相对于400 ℃时减小,最后N2O分解率稳定在80%~85%。在400 ℃和420 ℃时,通入水蒸气,活性虽有所下降,但是撤去水蒸气后,催化剂均恢复高活性,N2O分解率在99%左右,说明催化剂活性下降后可以恢复,具有可逆性。在400 ℃和420 ℃的基础上,继续提高温度至460 ℃和500 ℃,进行水热稳定性实验,由图10可以看出,在通入水蒸气后,N2O的分解率依然保持在99%左右。良好的水热稳定性一直是以γ-Al2O3为载体的催化剂相对于其他类型催化剂的优势。仇杨君[34]在以γ-Al2O3为载体,CuO为主活性组分制备Cu/γ-Al2O3催化剂催化分解N2O的水热稳定性实验中,在495 ℃条件下,N2O的分解率仅为25%,本实验硅铝比为27的Cu8/HZSM-5催化剂水热稳定性好于Cu12/γ-Al2O3

    在400 ℃与420 ℃条件下,催化剂活性下降具有可逆性,在460 ℃与500 ℃条件下,催化剂活性几乎没有下降,这说明水蒸气的通入并没有破坏载体的骨架结构,造成分子筛结构坍塌。催化活性受到水蒸气的影响,可能是因为水分子高温条件下,在催化剂活性位点分解,与N2O分子形成竞争,同时造成活性位点羟基化,N2O分解率下降[35]。由以上实验结果可以得出,制备催化剂Cu8/HZSM-5具有良好的水热稳定性。

    图11为不同硅铝比Cu8/HZSM-5催化剂在400 ℃下100 h的寿命实验。寿命实验结果可以看出,在100 h内,3种硅铝比催化剂的活性非常稳定,且硅铝比低的催化剂活性明显高于硅铝比高的催化剂。Cu8/HZSM-5催化剂稳定的活性说明,以载体稳定的骨架结构为场所,Cu组分处于稳定状态,持续催化分解N2O。对于硅铝比为27的Cu8/HZSM-5催化剂,良好的热稳定性与较好的催化活性,使其在工业应用中有很大的应用前景。

  • 1)等体积浸渍法制备的Cu/HZSM-5催化剂活性优于Cu/ZSM-5催化剂的活性,主要是因为催化剂上CuO含量的差异。

    2)研究结果表明,载体硅铝比越低,催化剂的反应活性越好,硅铝比为27的Cu8/HZSM-5催化活性最好。

    3)催化剂Cu8/HZSM-5水热稳定性实验表明,反应原料中水蒸气含量为9%时,硅铝比为27的Cu8/HZSM-5催化剂仍然保持良好的水热稳定性,且催化剂因水蒸气而失活,然后活性可以恢复,在100 h连续反应时间内,催化剂反应活性没有降低。

参考文献 (35)

返回顶部

目录

/

返回文章
返回