[1] FIELD C B, DUKES J S, LUO Y, et al. Atmospheric science: Nitrogen and climate change[J]. Science, 2003, 302(5650): 1512-1513. doi: 10.1126/science.1091390
[2] 郭慧雯, 张哲男, 孙世昌, 等. A/O工艺N2O的产生与释放的影响因素[J]. 环境工程学报, 2014, 8(6): 2515-2522.
[3] RUSSO N, MESCIA D, FINO D, et al. N2O Decomposition over perovskite catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4226-4231.
[4] 李宁. N2O分解催化剂的制备[J]. 化工进展, 2007, 26(11): 1659-1661. doi: 10.3321/j.issn:1000-6613.2007.11.027
[5] ZHANG X, SHEN Q, HE C, et al. Decomposition of nitrous oxide over Co-zeolite catalysts: Role of zeolite structure and active site[J]. Catalysis Science & Technology, 2012, 2(6): 1249-1258.
[6] LI Y J, ARMOR J N. Catalytic decomposition of nitrous oxide on metal exchanged zeolites[J]. Cheminform, 2010, 24(1): 21-29.
[7] NOBUKAWA T, YOSHIDA M, OKUMURA K, et al. Effect of reductants in N2O reduction over Fe-MFI catalysts[J]. Journal of Catalysis, 2005, 229(2): 374-388. doi: 10.1016/j.jcat.2004.11.009
[8] IWAMOTO M, FURUKAWA H, MINE Y, et al. Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. Journal of the Chemical Society Chemical Communications, 1986, 16(16): 1272-1273. doi: 10.1039/c39860001272
[9] ABU-ZIED B M, SCHWIEGER W, ANDRE U. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 277-288. doi: 10.1016/j.apcatb.2008.04.004
[10] SMEETS P, GROOTHAERT M, VANTEEFFELEN R, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: Elucidating the influence of the Cu-Cu distance on oxygen migration[J]. Journal of Catalysis, 2007, 245(2): 358-368. doi: 10.1016/j.jcat.2006.10.017
[11] 张志红, 何晓囡, 金俏, 等. 分光光度法测定ZMS-5分子筛催化剂中的硅[J]. 北京石油化工学院学报, 2010, 18(3): 43-46. doi: 10.3969/j.issn.1008-2565.2010.03.010
[12] 程火生. 辽阳石化己二酸生产中N2O减排技术应用研究[D]. 北京: 清华大学, 2010.
[13] 潘惠芳, 周世新, 张在龙, 等. 第一性晶粒大小与催化活性的关系: 最适宜的分散度[J]. 华东石油学院学报(自然科学版), 1985, 27(2): 54-59.
[14] 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
[15] OLSON D H, HAAG W O, LAGO R M. Chemical and physical properties of ZSM-5 substitutional series[J]. Journal of Catalysis, 1980, 61(2): 390-396. doi: 10.1016/0021-9517(80)90386-3
[16] XIE P F, MA Z, ZHOU H B, et al. Catalytic decomposition of N2O over Cu-ZSM-11 catalysts[J]. Microporous and Mesoporous Materials, 2014, 191: 112-117. doi: 10.1016/j.micromeso.2014.02.044
[17] TSAI M L, HADT R G, VANELDEREN P, et al. [Cu2O]2+active site formation in Cu-ZSM-5:Geometric and electronic structure requirements for N2O activation[J]. Journal of the American Chemical Society, 2014, 136(9): 3522-3529. doi: 10.1021/ja4113808
[18] 孙慧勇, 胡津仙, 王建国, 等. 小晶粒 Fe-ZSM-5分子筛合成过程中晶粒大小和分布的控制[J]. 石油化工, 2001, 30(3): 188-192. doi: 10.3321/j.issn:1000-8144.2001.03.004
[19] 王幸宜. 催化剂表征[M].上海: 华东理工大学出版社, 2008.
[20] 张进, 肖国民. ZSM-5型分子筛的表面酸性与催化活性[J]. 分子催化, 2002, 16(4): 307-311. doi: 10.3969/j.issn.1001-3555.2002.04.014
[21] LEE D K. Quantification and redox property of the oxygen-bridged Cu2+, dimers as the active sites for the NO decomposition over Cu-ZSM-5 catalysts[J]. Korean Journal of Chemical Engineering, 2004, 21(3): 611-620. doi: 10.1007/BF02705495
[22] LI Y, FENG Z C, XIN H C, et al. Effect of aluminum on the nature of the iron species in Fe-SBA-15[J]. Journal of Physical Chemistry B, 2006, 110(51): 26114-26121. doi: 10.1021/jp0657641
[23] 李富霞, 任晓光, 李鹏, 等. 焙烧条件对CuO/ZSM-5催化剂脱硫脱硝性能的影响[J]. 环境工程学报, 2013, 7(8): 3117-3122.
[24] 曹原, 刘连军, 姚志建, 等. 氧化铜物种分散状态对NO还原活性的影响[C]//中国稀土协会催化专业委员会. 全国稀土催化学术会议, 2010: 130-131.
[25] MENG T, REN N, MA Z. Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition[J]. Chinese Journal of Chemical Engineering, 2018, 23(5): 1051-1058. doi: 10.1016/j.cjche.2018.02.015
[26] ZOU W, XIE P F, HUA W M, et al. Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets[J]. Journal of Molecular Catalysis A: Chemical, 2014, 394: 83-88. doi: 10.1016/j.molcata.2014.07.004
[27] 卢仁杰, 张新艳, 郝郑平. 不同硅铝比Fe-ZSM-5催化剂对氧化亚氮催化分解性能的研究[J]. 环境科学, 2014, 35(1): 371-379.
[28] OBALOVA L, FILA V. Kinetic analysis of N2O decomposition over calcined hydrotalcites[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 353-359. doi: 10.1016/j.apcatb.2005.11.031
[29] TERAOKA Y, TAI C, OGAWA H, et al. Characterization and NO decomposition activity of Cu-MFI zeolite in relation to redox behavior[J]. Applied Catalysis A: General, 2000, 200(1): 167-176. doi: 10.1016/S0926-860X(00)00631-1
[30] 朱洪法. 催化剂载体制备及应用技术[M]. 北京: 石油工业出版社, 2014.
[31] 崔乃云. 超低硅铝比ZSM-5分子筛的合成与表征[D]. 青岛: 中国石油大学(华东), 2014.
[32] PEREZ-RAMIREZ J, KAPTEIJN F, SCHOFFEL K, et al. Formation and control of NO in nitric acid production[J]. Applied Catalysis B: Environmental, 2003, 44(2): 117-151. doi: 10.1016/S0926-3373(03)00026-2
[33] PEREZ-RAMIREZ J. Prospects of N2O emission regulations in the European fertilizer industry[J]. Applied Catalysis B: Environmental, 2007, 70(1): 31-35. doi: 10.1016/j.apcatb.2005.11.019
[34] 仇杨君. 催化分解N2O催化剂制备及中试条件研究[D]. 北京: 北京石油化工学院, 2018.
[35] 马帅, 陆强, 蔺卓玮, 等. CuO-ZnO/γ-A12O3催化剂分解N2O的性能研究[J]. 动力工程学报, 2017, 37(9): 732-737.