

Environmental Engineering

第 14卷第 6期 2020年 6月 Vol. 14, No.6 Jun. 2020

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

🔡 文章栏目:大气污染防治

DOI 10.12030/j.cjee.201908001

中图分类号 X511 文献标识码

林睿, 苏亚欣, 程江浩, 等. Fe/Ga₂O₃-Al₂O₃ 催化甲烷还原 NO 的性能[J]. 环境工程学报, 2020, 14(6): 1592-1604. LIN Rui, SU Yaxin, CHENG Jianghao, et al. Performance of Fe/Ga₂O₃-Al₂O₃ catalysts on methane selective catalysis and NO reduction[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1592-1604.

Fe/Ga₂O₃-Al₂O₃催化甲烷还原 NO 的性能

林睿¹,苏亚欣^{1,*},程江浩¹,张显威¹,温妮妮¹,邓文义¹,周皞²,赵兵涛³

2.常州工程技术学院智能制造学院,常州 213164

3. 上海理工大学能源与动力工程学院, 上海 200093

第一作者:林睿(1996—),男,硕士研究生。研究方向:燃烧污染物控制。E-mail: 895663942@qq.com *通信作者:苏亚欣(1972—),男,博士,教授。研究方向:燃烧及污染物生成与控制。E-mail: suyx@dhu.edu.cn

摘 要 以甲烷为还原剂的选择性催化脱硝技术 (SCR-CH₄) 是一种很有潜力的新的脱硝方法,但催化剂的催化 活性比较低。为了提高催化剂的活性以及抗水能力,可使用 Fe 对 Al₂O₃ 负载的 Ga₂O₃ 催化剂进行改性。采用共 沉淀法,制备了 xFe/Ga₂O₃-Al₂O₃ 催化剂,在固定床反应器中测试其选择性催化 CH₄ 还原 NO 的性能。使用 XRD、N₂ 吸附脱附、XPS、H₂-TPR、Py-IR等方法进行表征。结果表明:经过 Fe 改性后的催化剂提高了中高温 的催化活性,提高了催化剂的 N₂选择性,并改善了催化剂的抗水特性;5Fe/Ga₂O₃-Al₂O₃ 催化剂在 500 ℃、富氧 条件下,达到 76% 的 NO 转化率和 100% 的 N₂选择性;在 5% 水蒸气条件下,5Fe/Ga₂O₃-Al₂O₃ 在 500 ℃ 仍保持 60% 以上的 NO 转化率。N₂ 吸附脱附结果显示,引入 Fe 后,催化剂保持了原有比表面积,并且大大增加了催化 剂孔径,可提高催化剂抗水能力。XPS 与 UV-vis 显示,5Fe/Ga₂O₃-Al₂O₃ 具有高含量的游离态 Fe³⁺,可提高催化 剂的中高温活性。H₂-TPR 结果显示,Fe 的引入提高了催化剂氧化还原能力,增强了原有 Ga₂O₃-Al₂O₃ 中高温的 还原活性。Py-FT-IR 结果显示,催化剂表面同时存在 Lewis 酸和 Brønsted 酸,铁的引入增加了催化剂表面的 Lewis 酸量。因此,Fe 修饰 Ga₂O₃-Al₂O₃ 是提高 Ga₂O₃-Al₂O₃ 催化剂的 SCR-CH₄ 脱硝性能的有效方法。 关键词 选择性催化还原;NO; CH₄; Fe/Ga₂O₃-Al₂O₃ 催化剂

氮氧化物 (NO_x) 是造成空气污染的主要污染物之一。在脱除 NO_x 的应用研究中,目前研究较 多的方法是选择性催化还原 NO_x(SCR),如以 NH₃ 为还原剂的方法 (NH₃-SCR)。但在 20 世纪 90 年 代,IWAMOTO^[1]和 HELD 等^[2]发现,富氧条件下,Cu-ZSM-5 催化剂可利用烃类物质选择性催化 还原 NO,烃类的 SCR 还原 NO 受到广泛关注。已有研究^[3-6]对不同类型的催化剂对 C₂~C₃ 的碳氢燃 料的 SCR 脱硝特性进行了深入的探讨,在一定条件下取得了丰富的结果。

与其他烃类相比,作为天然气主要成分的甲烷储量丰富,价格低廉,远比其他烃类容易获得,因此,甲烷的选择性催化脱硝(CH₄-SCR)具有显著的工程应用优势。CH₄的碳氢键能较高, CH₄的活化非常困难,在有 O₂条件下,易发生燃烧反应^[7]。因此,对C₂~C₃烃具有催化活性的催化剂,对于 CH₄-SCR 的反应活性却很低^[8]。目前,一些研究^[9-22]表明 Co、In、Pd、Ga 等离子具有一定的 CH₄-SCR 催化活性。但是由表 1 可知,使用 Co、In、Pd 等作为活性金属的 CH₄-SCR 催化效率

收稿日期: 2019-08-01; 录用日期: 2019-09-17

基金项目:上海市自然科学基金资助项目(19ZR1400700, 17ZR1419300);江苏省自然科学基金资助项目(BK20181161);中央高校 基本科研业务费(2232019D3-24)

较低。虽然 COSTILLA 等^[13]使用离子交换法制得 Pd-mordenite 催化剂可在 600 ℃ 达到 90% 脱硝效 率,但是 N₂选择性较差,并且在有 5%H₂O 的条件下,脱硝效率不超过 60%。而 GIL 等^[4]发现, 经脱羟基处理后的镁碱沸石分子筛负载 Co、In 后 (InCoFER),在 0.25%H₂O 的条件下,450 ℃ 时达 到 97.5% 的 NO 转化率,然而实验中加入的水蒸气的量过少,难以准确地评估 InCoFER 催化剂的抗 水性能。由表 1 可知,镓作为活性金属,具有很高的甲烷催化活性。但是研究^[18-22]发现,通过负 载、溶剂、喷雾热解、共沉淀等方法制成的 Ga₂O₃-Al₂O₃ 均受水蒸气影响较大,仅加入少量的水蒸 汽,便会导致催化剂效率下降至 30%。MIYAHARA 等^[19]研究发现,利用溶剂热法制备 γ-Ga₂O₃-Al₂O₃ 的催化剂在 2.5%H₂O 条件下,550 ℃ 仍具有 50% 的 CH₄ 催化 NO 活性;但在 5%H₂O 条件下, 溶剂法制备得到的 γ-Ga₂O₃-Al₂O₃ 在 500 ℃ 催化效率不足 20%^[20]。因此,选择使用镓基催化剂仍存 在抗水差的问题。

ruore r	eduarysis for selective eduarytic reduction		inano	
催化剂	反应工况	NO转化率/%	温度/℃	来源
Co-ZSM-5	0.2%NO+0.2%CH ₄ +2%O ₂	50	500	[9]
Co-ZSM-5	0.082%NO+0.07%CH ₄ +2.5%O ₂	50	400	[<mark>10</mark>]
Co-ZSM-5	0.5%NO+ $0.2%$ CH ₄ + $3%$ O ₂	70	400	[11]
Co, H-mordenite	0.4%NO+0.4%CH ₄ +2%O ₂	60	550	[12]
Pd-mordenite	0.101%NO+0.33%CH ₄ +4.1%O ₂	90	600	[13]
InCoFER	0.1%NO+ $0.2%$ CH ₄ + $4%$ O ₂ + $0.25%$ H ₂ O	97.5	450	[14]
Pd-MOR	$0.1\%{\rm NO}{+}0.1\%{\rm CH_4{+}7\%O_2}$	25	500	[15]
Ce/Pd-MOR	0.1%NO+ $0.1%$ CH ₄ +7%O ₂	35	500	[15]
Ga-H-ZSM-5	$0.161\%\rm{NO}{+}0.1\%\rm{CH}_4{+}2.5\%\rm{O}_2$	34	500	[16]
Ga/H-ZSM-5	0.1%NO+0.1%CH ₄ +10%O ₂	90	500	[17]
Ga ₂ O ₃ /Al ₂ O ₃	0.1%NO+0.1%CH ₄ +6.7%O ₂	70	550	[18]
γ -Ga ₂ O ₃ -Al ₂ O ₃ (ST)	0.1%NO+0.1%CH ₄ +6.7%O ₂	90	550	[19-20]
γ -Ga ₂ O ₃ -Al ₂ O ₃ (SP)	0.1%NO+ $0.2%$ CH ₄ + $6.7%$ O ₂	70	550	[21]
γ -Ga ₂ O ₃ -Al ₂ O ₃ (CP)	0.1%NO+0.1%CH ₄ +6.7%O ₂	85	550	[22]

表1 甲烷选择还原 NO 催化剂

Table 1 Catalysts for selective catalytic reduction of NO with meth

已有研究^[23]表明,金属铁在 HC 还原 NO 的反应中具有良好的抗水抗硫特性。负载了 Fe 的堇 青石催化剂可在 600 ℃ 达到 97% 的 NO 还原效率,通入 2.1% 水蒸气,仍保持 60% 以上的催化效 率^[24]。以柱撑黏土为载体负载铁离子的催化剂 Fe/Ti-PILC^[25]和 Fe-PILC^[26],在 350 ℃ 可达到 95% 以 上的脱硝效率,同时在 10% 水蒸气和 0.2% 的 SO₂下,400 ℃ 仍保持 80% 的催化效率。有研究^[27]发 现,采用 Fe 修饰的 Fe-Ag/Al₂O₃/CM 催化剂,可在 500 ℃ 达到超过 90% 的脱硝效率,分别通入 8% 水蒸气和 0.02% 的 SO₂,脱硝效率基本无变化,有效地提高了 Ag/Al₂O₃/CM 催化剂抵抗烟气中 的 SO₂和 H₂O 的能力。为改善 Ga₂O₃-Al₂O₃ 催化活性,并提高其抗水能力,本研究采用 Fe 对镓基催 化剂进行修饰、制备 Fe/Ga₂O₃-Al₂O₃ 催化剂,对其 CH₄-SCR 反应特性进行实验研究,并通过 XRD、N₂ 吸附脱附、XPS、H₂-TPR、Py-IR 等技术手段对催化剂的物理化学性质进行表征。

1 实验部分

1.1 催化剂的制备

称取一定量的 Ga(NO₃)₃·xH₂O、Al(NO₃)₃·9H₂O 和 Fe(NO₃)₃·9H₂O, 混合溶解在 100 mL 的去离子

水中,得到盐溶液。根据研究^[22],固定 Ga 与 Al 物质的量的比例为 3:7。另取 5 倍沉淀当量的氨 水,溶入 200 mL 去离子水中,得到沉淀剂溶液。在室温条件下搅拌,往沉淀剂溶液中缓慢滴加金 属盐溶液,在室温条件下,剧烈搅拌 1 h。从溶液中离心得到前驱体,依次使用去离子水和无水乙 醇各洗涤 3 次,在干燥箱中 80 ℃条件下干燥 12 h,然后在马弗炉内 700 ℃、空气气氛条件下煅烧 2 h,自然冷却到室温,得到 xFe/Ga₂O₃-Al₂O₃ 催化剂 (其中 x 为 Fe 所占金属离子物质的摩尔比)。

1.2 催化剂的 CH₄-SCR 性能测试

在程序控温固定床石英管微反应器上进行 xFe/Ga₂O₃-Al₂O₃ 催化 CH₄ 选择性还原 NO 的测试, 石英管内径为 8 mm。催化剂压片、粉碎、过筛,至 24~50 目,将 0.5 g 催化剂放置于石英管固定床 内。配气采用模拟烟气环境,模拟烟气组成为 0.1%NO、0.2%CH₄、1%O₂、0.02%SO₂、5%H₂O,气 体总流量为 200 mL·min⁻¹,其余气体由 N₂ 配平,反应的体积空速 GHSV 为 16 000 h⁻¹。实验开始之 前,首先在 N₂ 氛围、300 ℃ 条件下对催化剂样品进行 30 min 的预处理,去除催化剂样品表面吸附 的水蒸气和其他气体;待反应器与样品冷却至室温后,开始进行 CH₄-SCR 反应实验,温度为 200~ 600 ℃,各个温度稳定 20 min 后记录数据,反应器升温速率为 5 ℃ min⁻¹。反应后的 NO、NO₂、 NO_x 通过烟气分析仪在线检测,CH₄ 由气相色谱仪 (GC-4000A)KB-Al₂O₃/Na₂SO₄ 毛细管柱氢火焰电 离检测器 (FID) 检测,温度稳定后进行采样,每 5 min 采样 1 次。

NO转化率、CH₄转化率、N₂选择性计算方法见式(1)~式(3)。

$$R_{\rm NO} = \frac{c_{\rm NOi} - c_{\rm NOo}}{c_{\rm NOi}} \times 100\% \tag{1}$$

$$R_{\rm CH_4} = \frac{c_{\rm CH_4i} - c_{\rm CH_4o}}{c_{\rm CH_4i}} \times 100\%$$
(2)

$$S_{N_2} = \frac{c_{NOi} - c_{NOo} - c_{NO_2o} - 2c_{N_2Oo}}{c_{NOi} - c_{NOo}} \times 100\%$$
(3)

式中: *R*_{NO} 为 NO 转化率; *R*_{CH4}为 CH4 转化率; *S*_{N2}为 N2 选择性; *c*_{NOi} 为进口 NO 浓度; *c*_{NOo} 为出口 NO 浓度; *c*_{CH4}为进口 CH4 浓度; *c*_{CH4}为出口 CH4 浓度; *c*_{NO2}为出口 NO2 浓度; *c*_{N2O0}为出口 N2O 浓度。

1.3 催化剂的表征

催化剂的基础物理化学性质分别采用 XRD、N₂吸附-脱附、XPS、UV-vis、H₂-TPR、Py-FTIR 等进行表征。

使用 18 kW 转靶 X 射线衍射仪 (D/max-2550VB+) 进行催化剂物相表征,采用 Cu Kα 作为辐射 源,5°~80°测试,扫描速率 2 (°)·min⁻¹,操作电压为 40 kV,电流为 30 mA。

使用全自动比表面积与孔隙度分析仪 (ASAP 2460) 进行介孔全分析测试,利用 BET 方法计算 催化剂的比表面积,BJH 方法计算催化剂脱附孔容、平均孔径以及孔径分布。

使用 Thermo Fisher Scientific 公司的 ESCALAB 250 XI 型号仪器测定催化剂的表面元素及其化学状态。

使用 SHIMADZU 公司的紫外可见近红外光谱仪 (UV 3600) 测试催化剂的吸收光谱,检测波长为 200~800 nm。

H₂-TPR 在自组装的程序升温装置测试,在立式石英管中装填 0.4 g 催化剂,使用程序升温炉加 热。实验前,300 ℃ N₂ 氛围预处理 30 min,冷却至室温,通入 5%H₂/95%N₂ 的混合气进行催化剂的 还原特性测试,升温速率 5 ℃·min⁻¹,尾气 H₂ 含量通过气相色谱仪热导检测器 (TCD)测试,每 5 min 采样分析。

使用 FT-IR Frontier 型吡啶红外光谱仪 (PE) 测定催化剂表面的酸性位 (Lewis 酸和 Brønsted) 及含

量。保持 10⁻³ Pa 的真空度,样品 500 ℃ 预处理 1 h。室温吸附吡啶,分别在 40、150 和 300 ℃ 下进 行测试。

2 结果与讨论

2.1 催化剂 CH₄-SCR 活性评价

由图 1(a)可知,随着反应温度的增加,Ga₂O₃-Al₂O₃催化剂的 CH₄-SCR 反应的 NO 转化率增 大,在550 ℃时达到最大值 81%。当反应温度继续升高后,NO 转化率有所减小,这是因为高温促 进了甲烷的燃烧反应^[19],使得甲烷参与选择性还原 NO 的反应减弱。经铁修饰后的 xFe/Ga₂O₃-Al₂O₃催化剂在 350~500 ℃,CH₄-SCR 反应的 NO 转化率均高于 Ga₂O₃-Al₂O₃催化剂,在 500 ℃ 时 NO 转化率约为 75%。反应温度超过 500 ℃ 后,NO 转化率有所下降,但仍保持在 65% 左右。随着 铁含量的增加,NO 转化率先增大后减小,如 5Fe/Ga₂O₃-Al₂O₃的 NO 转化率高于 2Fe/Ga₂O₃-Al₂O₃, 然而当铁进一步增加后,如 10Fe/Ga₂O₃-Al₂O₃,NO 转化率反而降低。

图 1(b) 和图 1(c) 给出了甲烷转化率与 N₂选择性的结果。随着反应温度的增加, CH₄转化率增大。在 600 ℃ 以后, CH₄的转化率都达到 100%,且 *x*Fe/Ga₂O₃-Al₂O₃催化剂的 CH₄转化率都高于 Ga₂O₃-Al₂O₃催化剂。*x*Fe/Ga₂O₃-Al₂O₃催化剂的 N₂选择性明显高于 Ga₂O₃-Al₂O₃催化剂,N₂选择性随着 Fe 的加入量得到提高,在 450 ℃ 以后能保证 100% 的 N₂选择性。这说明 Fe 物种的引入,促进甲 烷活化与 NO 反应,并抑制了 N₂O 和 NO₂ 的形成,从而提高了 N₂选择性^[28-29]。

Fig. 1 NO conversion to N₂, CH₄ conversion, N₂ selectivity of the catalysts

2.2 H₂O和 SO₂的影响

化石燃料燃烧产生的实际烟气存在一定量的水蒸气与 SO₂,因此,须考虑水蒸气和 SO₂ 对 HC-SCR 反应的影响。水蒸气与 SO₂ 会大大降低 Cu-ZSM-5 分子筛的催化活性,并且导致结构破坏^[30]。前期研究表明,金属铁/氧化铁^[31-32] 以及铁基催化剂^[26] 在使用烷烃催化还原 NO 时具有良好的抗水 硫特性,用铁修饰银基催化剂改善了原有银基催化剂的抗水硫特性^[27],因此,对 xFe/Ga₂O₃-Al₂O₃ 的抗水抗硫特性也需要进行评估。在 500 ℃ 分别进行水蒸气和 SO₂ 氛围下脱硝测试,实验结果如图 2 所示。由图 2(a) 可知,当反应气体中通入 5% 的水蒸气后,Ga₂O₃-Al₂O₃ 催化剂的 NO 转化率出现大幅度下降,降低了 20%。这是由于水蒸气与 NO 或 CH₄ 在催化剂同一位置产生竞争吸附,从而影响了 NO 还原反应的活性位点,不利于 NO 的吸附物种的形成,也不利于 CH₄ 的吸附与活化^[19]。当停止水蒸气的加入时,NO 转化率即恢复到之前水平,说明水蒸气导致催化剂中毒是可逆的。当用铁进行催化剂修饰后,如 5Fe/Ga₂O₃-Al₂O₃,在反应气体中通入 5% 的水蒸气后,NO 转化率仅下降 10%,仍能保持在 60% 以上的 NO 转化效率。切断 H₂O 后,催化剂活性迅速恢复,说明铁的引入提高了催化剂抗水性能。图 2(b)反映了引入 0.02%SO,前、后 Ga₂O₃-Al₂O₃ 与 5Fe/Ga₂O₃-Al₂O₃ 的催

图 2 500 °C 时水蒸气和 SO₂ 分别对 Ga₂O₃-Al₂O₃ 和 5Fe/Ga₂O₃-Al₂O₃ 催化剂活性的影响 Fig. 2 Influences of water vapor and SO₂ on NO conversion of Ga₂O₃-Al₂O₃ and 5Fe/Ga₂O₃-Al₂O₃ at 500 °C

化效果变化。可以看出, Ga_2O_3 -Al_2O₃受 SO₂的抑制较为明显, 而 5Fe/Ga₂O₃-Al₂O₃受 SO₂的影响较小, 在 500 ℃ 引入 0.02%SO₂, 仍能保持 70% 左右的效率; 在切断 SO₂后, 脱硝效率与引入 SO₂前 相比率有略微的下降 (<2%)。这说明 Fe 的引入能够提高了催化剂的抗硫能力。

2.3 XRD 分析

如图 3 所示,所有样品的衍射峰都非常 宽,表明结晶度低,这种较低结晶度是大多数 亚稳结构氧化铝的常见特征,同时也是纯的γ-Ga₂O₃多晶型的共同特征^[33]。同时催化剂 XRD 谱图所示的宽度与低结晶度和高表面积有关^[34]。 催化剂 XRD 图谱与γ-Al₂O₃ (JCPDS#10-425)和 γ-Ga₂O₃ (JCPDS#20-426)标准卡片进行比较,由 图 3 可知,γ-Al₂O₃ 的 d(400)晶面、d(440)晶面 和 d(311)晶面对应角度都向低角度偏移。Ga 离子的半径为 0.062 nm,Al离子对应的半径为 0.051 nm,当 Ga³⁺进入氧化铝的晶格中,取代 Al³⁺位置,会使晶胞增大,导致γ-Al₂O₃特征峰

向低角度偏移,说明催化剂均形成了尖晶石结构固溶体γ-Ga₂O₃-Al₂O₃^[34],这是 CH₄ 催化还原 NO 的 重要结构^[35]。而加入 Fe 后,在 XRD 谱图中并没有观测到 Fe₂O₃ 或其他形式的铁物质特征衍射峰, 这说明铁物种可能高度分散,以无定形态存在,或者进入晶胞形成固溶体。引入过量 Fe 后, XRD 图谱中γ-Ga₂O₃-Al₂O₃ 特征峰强度下降,可能是 Fe 在催化剂表面发生了团聚,从而影响了γ-Ga₂O₃-Al₂O₃ 结构,这可能是 10Fe/Ga₂O₃-Al₂O₃ 的 NO 转化率下降的原因。

2.4 N₂ 吸附/脱附表征

由表 2 可知, Ga₂O₃-Al₂O₃ 的比表面积、孔容和孔径分别为 221 m²·g⁻¹、0.582 cm³·g⁻¹、8.2 nm。 引入 Fe 后, 2Fe/Ga₂O₃-Al₂O₃ 的比表面积基本无变化, 孔容增加至 0.643 cm³·g⁻¹, 孔径达到 9.5 nm。 进一步增加铁含量后, 5Fe/Ga₂O₃-Al₂O₃ 的比表面积、孔容和孔径分别为 213 m²·g⁻¹、0.580 cm³·g⁻¹、 9.4 nm。当引入铁含量增加至 10%, 10Fe/Ga₂O₃-Al₂O₃ 的比表面积、孔容和孔径分别为 217 m²·g⁻¹、 0.626 cm³·g⁻¹、10.0 nm。说明共沉淀法引入 Fe对催化剂比表面积影响小, 但可以增大催化剂的孔 径, 而大孔径有利于降低水蒸气对催化活性的影响。 图 4(a)为催化的 N₂ 吸附脱附脱附等温曲 线,根据 2015年 IUPAC^[36]更新分类可知, xFe/Ga₂O₃-Al₂O₃催化剂为IV(a)型,为介孔类吸 附剂材料。在一定的相对压力下,吸附分支与 脱附分支发生分离,形成明显的滞回环。合成 的样品具有典型的介孔且具有较大孔径。在较 低的相对压力区域,曲线向上微微凸起,主要 是单分子层吸附作用,当压力足够大时,吸附

Table 2	Textural	properties	of different	t catalys	ts
		p p			

催化剂	比表面积/(m ² ·g ⁻¹)	孔容/(cm ³ ·g ⁻¹)	孔径/nm
Ga ₂ O ₃ -Al ₂ O ₃	221	0.582	8.2
$2Fe/Ga_2O_3\text{-}Al_2O_3$	221	0.643	9.5
$5Fe/Ga_2O_3\text{-}Al_2O_3$	213	0.580	9.4
$10 Fe/Ga_2O_3\text{-}Al_2O_3$	217	0.626	10.0

质发生毛细凝结,使得吸附量急剧增加。随着相对压力进一步增加、吸附曲线趋于平稳,当 p/p₀接近1时,曲线继续上升,催化剂皆呈现H3型回滞环^[37]。对于Ga₂O₃-Al₂O₃,在 p/p₀接近 1时,等温吸附脱附曲线的滞后环出现平台,说明吸附已经达到饱和。由图4(a)可知,共沉淀方法 引入铁物种,并没有影响到原有的孔隙结构。

由图 4(b) 可知, Fe 的加入使得孔径增大,孔径分布朝更宽的区域分布。这说明 Fe 可以使催化 剂表面孔隙结构变得疏松,从而增加了孔容与孔径。MASUDA 等^[22]研究发现,小孔径的 Ga₂O₃-Al₂O₃ 催化剂在反应中更容易受到水蒸气的影响,而大孔径的催化剂的性能受水蒸气影响更小。引入铁物种后,催化剂的结构特性受影响较小,同时还增大了催化剂的孔径,这可能是其具有较好的抗水特性的原因。

Fig. 4 N₂ adsorption/desorption isotherms and BJH pore size distribution of the catalysts

2.5 XPS 表征分析

图 5 是 xFe/Ga₂O₃-Al₂O₃ 的 XPS 谱图。图 5(a)为 Ga2p 的谱图,在1118 eV 和1145 eV 处附近, 分别出现 2 个特征峰,峰间距为 27 eV,分别对应于 Ga2p3/2 和 Ga2p1/2 自旋轨道,为+3 价 Ga 特征 峰,在1118.7 eV 处,Ga 物种对应于四面体 Ga 物种^[38]。而在镓铝固溶体结构中,为+3 价 Ga 特征峰, 离子会优先占据 Al³⁺的四面体结构,处于四面体位置 Ga³⁺具有更高的甲烷催化还原活性^[39]。引入铁 后,四面体位置 Ga³⁺仍占主导地位。但引入过多铁后,10Fe/Ga₂O₃-Al₂O₃ 催化剂 Ga2p 谱图成不对称 分布,说明 Ga³⁺存在其他结构,因此,引入过量铁会影响 Ga³⁺在 Al³⁺的四面体位置分布,影响甲烷 催化还原活性,这与 XRD 的分析结论相一致。图 5(b)为 Fe2p 谱图,由 Fe2p_{1/2} 峰和 Fe2p_{3/2} 及其相 应卫星峰组成,为+3 价 Fe 特征峰^[40]。通过分峰处理,Fe2p_{3/2} 可由位于 711.0 eV 附近的Fe³⁺和 713.0 eV 左右的Fe³⁺共同组成,前者可对应游离态 Fe³⁺物种,后者对应 Fe₂O₃ 物种^[41-42]。ZHANG 等^[43] 研究发 现,富氧条件下 Fe₂O₃ 颗粒物种的存在促进甲烷参与完全氧化,导致了 CH₄ 选择性还原 NO 的反应 减弱。由图 5(b)可知,引入铁后,2Fe/Ga₂O₃-Al₂O₃ 催化剂出现Fe³⁺_A与Fe³⁺_B 2 种铁物种。提高引入铁 量后, 5Fe/Ga₂O₃-Al₂O₃ 催化剂主要以游离态Fe³⁺存在。继续增加铁量,10Fe/Ga₂O₃-Al₂O₃ 催化剂

Fe³⁺比例上升。图 5(b)显示,5Fe/Ga₂O₃-Al₂O₃催化剂具有高含量游离态 Fe³⁺与低含量 Fe₂O₃颗粒,这可能与其具有较好的活性有关,也与图 1(a)和图 1(b)中 10Fe/Ga₂O₃-Al₂O₃比 5Fe/Ga₂O₃-Al₂O₃具有更高的 CH₄转化率的同时,却具有更低的 NO 转化率的实验现象相一致。O 物种对催化剂的活性具有重要的影响,因此,须对 O1s 进行分峰研究,探讨表面氧物种的种类与含量。图 5(c) 是催化剂的 O1s XPS 图谱,通过曲线拟合分析,可分成 3 个峰型。最低结合能峰 O₁(529.3~529.7 eV) 为晶格氧

的能谱峰,结合能最高峰 O_{II} (>533.0 eV) 属于 羟基与吸附水组成表面氧能谱峰,位于中间的 O_{II} (531.5~531.8 eV)可归于催化剂表面吸附和弱 结合氧物种^[44-45]。在催化反应中,表面弱结合 氧物种 O_{II} 具有高移动性,含量越高,催化活 性 越高^[46]。由表3可知,5Fe/Ga₂O₃-Al₂O₃的 O_{II} 含量高,这与其具有高催化活性有关系。

Table 3 Surface composition of $r \text{Ee}/\text{Ga} \cap A1 \cap$						
	atomic fra	action)	110/0a ₂	0 ₃ -A1 ₂ 0	'3 %	
催化剂	Ga	Fe	Ο _Ι	OI	O _{III}	
2Fe/Ga ₂ O ₃ -Al ₂ O ₃	14.66	1.83	7.46	18.47	33.26	
5Fe/Ga ₂ O ₃ -Al ₂ O ₃	15.95	2.19	10.44	23.74	25.47	

13.03 3.71

6.85

18.51

36.35

 $vE_0(C_0 \cap A \cap O)$ 的表面组成 (佰子分数)

2.6 UV-vis

催化剂的化学组成与配位结构可以使用

UV-vis 光谱进行分析。Ga₂O₃ 是一种透明的宽禁带半导体材料,吸收波长<250 nm^[47]。根据 LI 等^[48]的研究,将铁的 UV-vis 吸收光谱分为 3 个峰,将 300 nm以下归于游离态 Fe³⁺,将 300~400 nm 的峰 归属 Fe_xO_y 团聚物种,将 400 nm 以上的峰归属 Fe₂O₃颗粒。对图 6 进行分峰处理,2Fe/Ga₂O₃-Al₂O₃ 中游离态 Fe³⁺、Fe_xO_y 团聚物、Fe₂O₃ 颗粒均有分布,且以游离态 Fe³⁺为主要存在形式。进一步增加 铁的含量,5Fe/Ga₂O₃-Al₂O₃催化剂中游离态 Fe³⁺、Fe_xO_y 团聚物种与 Fe₂O₃颗粒含量有所增加,且以 游离态 Fe³⁺存在;继续增加铁,10Fe/Ga₂O₃-Al₂O₃催化剂显示具有更高的 Fe₂O₃含量。研究认为,游

10Fe/Ga2O3-Al2O3

离态 Fe^{3+} 低温能促进甲烷活化成 HCHO^[43],而 HCHO 能参与 NO 还原反应^[49],促进了 NO 转 化,而 Fe_2O_3 颗粒会催化 CH₄ 的完全氧化^[50]。 因此, 5Fe/Ga₂O₃-Al₂O₃ 的催化活性高可能与高 含量游离态 Fe^{3+} 有关,这与 XPS 中 Fe2p 的分析 结果一致。

2.7 H₂-TPR 分析

催化剂还原能力是选择性催化还原的重要 参数,通过 H₂-TPR 研究催化剂的还原性能。 实验结果如图 7 所示,Ga₂O₃-Al₂O₃ 仅在 550 ℃

附近出现了一个较宽还原峰,这归属于 Ga³⁺→Ga⁺还原^[51-52]。引入 Fe 后, *x*Fe/Ga₂O₃-Al₂O₃在 350 ℃ 和 500 ℃ 附近出现 2 个新的还原峰,这说明引入铁后,增强了催化剂在中高温时的还原能力,从

而增强了中高温时的催化活性。根据研究, Fe 催化剂的还原分为2步,将350℃附近还原 峰归属于 Fe³⁺、Fe_xO_y、Fe₂O₃中的 Fe³⁺→Fe²⁺, 500℃附近还原峰归属于 Fe²⁺→Fe⁰还原。通过 比较起始还原温度,发现 5Fe/Ga₂O₃-Al₂O₃的还 原峰与 2Fe/Ga₂O₃-Al₂O₃和 10Fe/Ga₂O₃-Al₂O₃相 比,温度更低,因此,其具有更高的氧化能力 和更好的氧移动性^[46],这与 XPS 中 O1s 分析结 果一致,原因可能是 5Fe/Ga₂O₃-Al₂O₃具有更高 催化反应活性。

2.8 Py-FT-IR

催化剂表面酸性中心一般采取吡啶吸附红外光谱进行分析。吡啶分子可被吸附在催化剂表 面,利用在1640~1440 cm⁻¹光谱上的差异,可以分析得到 Lewis 酸部位和 Brønsted 酸部位。图 8 为催化剂在室温下吸附饱和后,在40℃和300℃ 抽真空后的红外图谱。DATKA等^[53]研究表明, 波数1440~1460 cm⁻¹和1600~1635 cm⁻¹为L酸吸收峰,波数1535~1550 cm⁻¹为 Brønsted 酸吸收 峰。BARZETTI等^[54]研究报道,在1450 cm⁻¹和1590~1620 cm⁻¹的图谱对应 Lewis 酸,1490 cm⁻¹ 和1576 cm⁻¹处吸收峰对应于 Brønsted 酸和 Lewis 酸。因此,1445、1576 和1600 cm⁻¹处对应于 Lewis 酸,1490 cm⁻¹处出现的是 Brønsted 酸和 Lewis 酸共同峰。

在1450 cm⁻¹ 附近形成的 L 酸中心上出现强吸收峰,说明 4 组样品主要表现出 Lewis 酸性特征,催化剂含有少量的 Brønsted 酸性位,这可能是催化剂表面形成表面羟基,从而形成了 B 酸性 位^[55], B 酸能够促进 NO 的氧化,形成重要反应中间体^[56]。分别根据峰面积与对应消光系数计算酸量,结果见表 4。与 Ga₂O₃-Al₂O₃ 相比, xFe/Ga₂O₃-Al₂O₃ 催化剂样品在 40 °C 具有更高的 Lewis 酸酸量,增加铁的引入量,L 酸酸量增加,说明铁的引入的确可以促进 Lewis 的酸量生成。KANTCHEVA 等^[57] 研究发现,CH₄ 可以被 Lewis 酸吸附活化,并形成能够催化还原的中间体。因此,引入 Fe 后,催化剂样品会具有更高的甲烷转化率,这与图 1(b)中甲烷转化率随引入铁量增加而增加的实验现象相一致。

表 4 催化剂的 B 酸和 L 酸含重 Table 4 Brønsted and Lewis acid content of catalysts						
催化剂		40 ℃	1	70 ℃		300 °C
	B酸	L酸	B酸	L酸	B酸	L酸
Ga ₂ O ₃ -Al ₂ O ₃	3.88	608.85	2.14	374.83	-0	181.66
2Fe/Ga ₂ O ₃ -Al ₂ O ₃	2.43	813.51	1.18	250.31	0	162.40
5Fe/Ga ₂ O ₃ -Al ₂ O ₃	4.15	835.59	2.23	298.28	0	100.71
10Fe/Ga ₂ O ₃ -Al ₂ O ₃	3.48	976.56	1.28	356.35	0	172.97

3 结论

1) 采用共沉淀法制备了 xFe/Ga₂O₃-Al₂O₃ 催化剂,研究了在富氧条件下的 SCR-CH₄ 脱硝特性。 经铁修饰后的 5Fe/Ga₂O₃-Al₂O₃ 比 Ga₂O₃-Al₂O₃ 具有更高的催化活性和更高的 N₂ 选择性,在 500 ℃、 富氧条件下,达到 76% 的 NO 转化率和 100% 的 N₂ 选择性,且具有较好的抗烟气中的 H₂O 和 SO₂ 的能力。

2) 催化剂表征结果显示,加入铁后,引入反应活性物质游离态 Fe³⁺,从而促进了甲烷活化。 而当引入过量的 Fe 时,催化剂表面产生大量 Fe₂O₃颗粒物,从而影响了 CH₄ 还原 NO 反应。共沉 淀方法引入铁物种,在不影响原有孔隙结构的同时,提高了催化剂表面的 Lewis 酸量和氧化还原性 能。因此, Fe 修饰 Ga₂O₃-Al₂O₃ 是提高 Ga₂O₃-Al₂O₃ 催化剂的 SCR-CH₄ 脱硝性能的有效方法。

参考文献

- [1] IWAMOTO M. Selective reduction of NO by lower hydrocarbons in the presence of O₂ and SO₂ over cupper ion-exchanged zeolites[J]. Shokubai, 1990, 32: 430-433.
- [2] HELD W, KÖNIG A, RICHTER T, et al. Catalytic NO_x reduction in net oxidizing exhaust gas[J]. SAE Transactions, 1990, 99: 209-216.
- [3] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal, 2018, 353: 839-848.
- [4] CHAIEB T, DELANNOY L, LOUIS C, et al. On the origin of the optimum loading of Ag on Al₂O₃ in the C₃H₆-SCR of NO_x[J]. Applied Catalysis B: Environmental, 2013, 142-143: 780-784.
- [5] KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, et al. Development of optimized Cu-ZSM-5 deNO_x catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Applied Catalysis A: General, 2007, 325(2): 345-352.
- [6] PAN H, SU Q F, CHEN J, et al. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature[J].
 Environmental Science & Technology, 2009, 43(24): 9348-9353.
- [7] OHTSUKA H, TABATA T. Influence of Si/Al ratio on the activity and durability of Pd-ZSM-5 catalysts for nitrogen oxide reduction by methane[J]. Applied Catalysis B: Environmental, 2000, 26(4): 275-284.
- [8] 张涛, 任丽丽, 林励吾. 甲烷选择催化还原NO研究进展[J]. 催化学报, 2004, 25(1): 75-83.

- [9] BELLMANN A, ATIA H, BENTRUP U, et al. Mechanism of the selective reduction of NO_x by methane over Co-ZSM-5[J].
 Applied Catalysis B: Environmental, 2018, 230: 184-193.
- [10] LI Y, ARMOR J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen[J]. Applied Catalysis
 B: Environmental, 1992, 1(4): L31-L40.
- [11] LI Y J, BATTAVIO P J, ARMOR J N. Effect of water vapor on the selective reduction of NO by methane over cobaltexchanged ZSM-5[J]. Journal of Catalysis, 1993, 142(2): 561-571.
- [12] LÓNYI F, SOLT H E, PÁSZTI Z, et al. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts[J]. Applied Catalysis B: Environmental, 2014, 150-151: 218-229.
- [13] COSTILLA I O, SANCHEZ M D, VOLPE M A, et al. Ce effect on the selective catalytic reduction of NO with CH₄ on Pdmordenite in the presence of O₂ and H₂O[J]. Catalysis Today, 2011, 172(1): 84-89.
- [14] GIL B, JANAS J, WŁOCH E, et al. The influence of the initial acidity of HFER on the status of Co species and catalytic performance of CoFER and InCoFER in CH₄-SCR-NO[J]. Catalysis Today, 2008, 137(2): 174-178.
- [15] MENDES A N, ZHOLOBENKO V L, THIBAULT-STARZYK F, et al. On the enhancing effect of Ce in Pd-MOR catalysts for NO_x CH₄-SCR: A structure-reactivity study[J]. Applied Catalysis B: Environmental, 2016, 195: 121-131.
- [16] LI Y J, ARMOR J N. Selective Catalytic reduction of NO with methane on gallium catalysts[J]. Journal of Catalysis, 1994, 145(1): 1-9.
- [17] KIKUCHI E, YOGO K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere[J]. Catalysis Today, 1994, 22(1): 73-86.
- [18] SHIMIZU K, SATSUMA A, HATTORI T. Selective catalytic reduction of NO by hydrocarbons on Ga₂O₃/Al₂O₃ catalysts[J]. Applied Catalysis B: Environmental, 1998, 16(4): 319-326.
- [19] MIYAHARA Y, TAKAHASHI M, MASUDA T, et al. Selective catalytic reduction of NO with C1~C3 reductants over solvothermally prepared Ga₂O₃-Al₂O₃ catalysts: Effects of water vapor and hydrocarbon uptake[J]. Applied Catalysis B: Environmental, 2008, 84(1): 289-296.
- [20] TAKAHASHI M, INOUE N, NAKATANI T, et al. Selective catalytic reduction of NO with methane on γ-Ga₂O₃-Al₂O₃ solid solutions prepared by the glycothermal method[J]. Applied Catalysis B: Environmental, 2006, 65(1): 142-149.
- [21] WATANABE T, MIKI Y, MASUDA T, et al. Performance of γ-Ga₂O₃-Al₂O₃ solid solutions prepared by spray pyrolysis for CH₄-SCR of NO[J]. Applied Catalysis A: General, 2011, 396(1): 140-147.
- [22] MASUDA T, WATANABE T, MIYAHARA Y, et al. Synthesis of Ga₂O₃-Al₂O₃ catalysts by a coprecipitation method for CH₄-SCR of NO[J]. Topics in Catalysis, 2009, 52(6/7): 699-706.

[23] 周皞, 苏亚欣, 戚越舟, 等. 水蒸气对甲烷在金属铁表面还原NO行为的影响[J]. 燃料化学学报, 2014, 42(11): 1378-1386.

- [24] ZHOU H, SU Y X, LIAO W Y, et al. NO reduction by propane over monolithic cordierite-based Fe/Al₂O₃ catalyst: Reaction mechanism and effect of H₂O/SO₂[J]. Fuel, 2016, 182: 352-360.
- [25] 董士林, 苏亚欣, 刘欣, 等. Fe/Ti-PILC用于C₃H₆选择性催化还原NO的研究[J]. 燃料化学学报, 2018, 46(10): 1231-1239.
- [26] 李前程, 苏亚欣, 董士林, 等. Fe-PILC在贫燃条件下催化丙烯选择性还原NO[J]. 燃料化学学报, 2018, 46(10): 1240-1248.
- [27] 杨溪, 苏亚欣, 钱文燕, 等. Fe-Ag/Al,O, 催化丙烯还原NO的实验研究[J]. 燃料化学学报, 2017, 45(11): 1365-1375.
- [28] YUAN M H, SU Y X, DENG W Y, et al. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C₃H₆[J]. Chemical Engineering Journal, 2019, 375: 122091.
- [29] MRAD R, COUSIN R, POUPIN C, et al. Propene oxidation and NO reduction over MgCu-Al(Fe) mixed oxides derived from hydrotalcite-like compounds[J]. Catalysis Today, 2015, 257: 98-103.
- [30] FENG X B, KEITH H W. FeZSM-5: A durable SCR catalyst for NO_x removal from combustion streams[J]. Journal of Catalysis, 1997, 166(2): 368-376.
- [31] 苏亚欣, 任立铭, 苏阿龙, 等. 甲烷在金属铁及氧化铁表面还原NO的研究[J]. 燃料化学学报, 2013, 41(11): 1393-1400.
- [32] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135.
- [33] AREÁN C O, BELLAN A L, MENTRUIT M P, et al. Preparation and characterization of mesoporous γ-Ga₂O₃[J]. Microporous and Mesoporous Materials, 2000, 40(1): 35-42.
- [34] AREÁN C O, DELGADO M R, MONTOUIL LOUT V, et al. Synthesis and characterization of spinel-type gallia-alumina solid solutions[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(11): 2121-2126.
- [35] HANEDA M, KINTAICHI Y, SHIMADA H, et al. Selective reduction of NO with propene over Ga₂O₃-Al₂O₃: Effect of solgel method on the catalytic performance[J]. Journal of Catalysis, 2000, 192(1): 137-148.
- [36] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
- [37] WATANABE T, MIKI Y, MASUDA T, et al. Pore structure of γ-Ga₂O₃-Al₂O₃ particles prepared by spray pyrolysis[J]. Microporous and Mesoporous Materials, 2011, 145(1): 131-140.
- [38] 高俊华, 刘平, 吉可明, 等. GaZSM-5分子筛的合成、表征及其在甲醇转化制烃(MTH)反应中的催化性能[J]. 燃料化学学 报, 2018, 46(4): 465-472.
- [39] MIYAHARA Y, WATANABE T, MASUDA T, et al. Evaluation of catalytic activity of Ga₂O₃-Al₂O₃ solid solutions for CH₄-SCR by UV-vis spectra after adsorption of C₃H₆ as a probe[J]. Journal of Catalysis, 2008, 259(1): 36-42.
- [40] WANDELT K. Photoemission studies of adsorbed oxygen and oxide layers[J]. Surface Science Reports, 1982, 2(1): 1-121.

- [41] YANG S, GUO Y, YAN N, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO₂ poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B: Environmental, 2011, 101(3): 698-708.
- [42] LIU Y M, XU J, HE L, et al. Facile synthesis of Fe-loaded mesoporous silica by a combined detemplation-incorporation process through Fenton's chemistry[J]. The Journal of Physical Chemistry C, 2008, 112(42): 16575-16583.
- [43] ZHANG Q H, LI Y, AN D L, et al. Catalytic behavior and kinetic features of FeO_x/SBA-15 catalyst for selective oxidation of methane by oxygen[J]. Applied Catalysis A: General, 2009, 356(1): 103-111.
- [44] TIAN T F, ZHAN M C, WANG W D, et al. Surface properties and catalytic performance in methane combustion of La_{0.7}Sr_{0.3}Fe_{1-v}Ga_vO₃₋₆ perovskite-type oxides[J]. Catalysis Communications, 2009, 10(5): 513-517.
- [45] 乐向晖, 张栖, 付名利, 等. SO₂对La_{0.8}K_{0.2}Cu_{0.05}Mn_{0.95}O₃钙钛矿催化剂氧化碳烟的影响[J]. 无机化学学报, 2009, 25(7): 1170-1176.
- [46] 叶青, 王瑞璞, 徐柏庆. 柠檬酸溶胶-凝胶法制备的Ce_{1.4}Zr_xO₂: 结构及其氧移动性[J]. 物理化学学报, 2006, 22(1): 33-37.
- [47] GUO D Y, WU Z P, LI P G, et al. Fabrication of β-Ga₂O₃ thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067-1076.
- [48] LI L D, SHEN Q, LI J J, et al. Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N₂O decomposition[J]. Applied Catalysis A: General, 2008, 344(1): 131-141.
- [49] CAPELA S, CATALÃO R, RIBEIRO M F, et al. Methanol interaction with NO₂: An attempt to identify intermediate compounds in CH₄-SCR of NO with Co/Pd-HFER catalyst[J]. Catalysis Today, 2008, 137(2): 157-161.
- [50] FIERRO G, MORETTI G, FERRARIS G, et al. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C₃H₈[J]. Applied Catalysis B: Environmental, 2011, 102(1): 215-223.
- [51] SHAO C T, LANG W Z, YAN X, et al. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: Effects of support and loading amount[J]. RSC Advances, 2017, 7(8): 4710-4723.
- [52] EL-MALKI E-M, VAN SANTEN R A, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622.
- [53] DATKA J, TUREK A M, JEHNG J M, et al. Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation[J]. Journal of Catalysis, 1992, 135(1): 186-199.
- [54] BARZETTI T, SELLI E, MOSCOTTI D, et al. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(8): 1401-1407.

[55] 吴越. 取代硫酸、氢氟酸等液体酸催化剂的途径[J]. 化学进展, 1998, 10(2): 158-171.

- [56] LÓNYI F, SOLT H E, VALYON J, et al. The SCR of NO with methane over In,H- and Co,In,H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Applied Catalysis B: Environmental, 2012, 117-118: 212-223.
- [57] KANTCHEVA M, VAKKASOGLU A S. Cobalt supported on zirconia and sulfated zirconia I: FT-IR spectroscopic characterization of the NO, species formed upon NO adsorption and NO/O, coadsorption[J]. Journal of Catalysis, 2004,

223(2): 352-363.

(本文编辑:郑晓梅,张利田)

Performance of Fe/Ga₂O₃-Al₂O₃ catalysts on methane selective catalysis and NO reduction

LIN Rui¹, SU Yaxin^{1,*}, CHENG Jianghao¹, ZHANG Xianwei¹, WEN Nini¹, DENG Wenyi¹, ZHOU Hao², ZHAO Bingtao³

1. School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2. School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Changzhou 213164, China

3. School of Energy and Power Engineering, University of Shanghai Science and Technology, Shanghai 200093, China

*Corresponding author, E-mail: suyx@dhu.edu.cn

Abstract The selective catalytic denitration with methane reductant (SCR-CH₄) is a very promising alternative method, however, the current reported catalysts showed low catalytic reactivity for SCR-CH₄. In order to improve the catalytic reactivity and the water resistance of the catalysts, Fe was used to modify the Ga_2O_3 catalysts supported on Al₂O₃. The xFe/Ga₂O₃-Al₂O₃ catalysts were prepared by co-precipitation method, and their catalytic performance on methane selective catalysis and NO reduction was tested in a fixed bed reactor. XRD, N₂ adsorption desorption, XPS, H₂-TPR, Py-IR, etc were used to characterize the xFe/Ga₂O₃-Al₂O₃ catalysts. The results showed that the catalysts modified by Fe improved the catalytic activity at medium and high temperature, their N₂ selectivity, and their tolerance for water presented in the feed gas. At 500 °C and oxygen-rich conditions, the 5Fe/Ga₂O₃-Al₂O₃ catalyst could achieve 76% NO conversation and 100% N₂ selectivity. Under 5% water vapor conditions, 5Fe/Ga₂O₃-Al₂O₃ still maintained over 60% NO conversation at 500 °C. The results of N_2 adsorption and desorption showed that the original specific surface area was maintained for the Fe-doped catalysts, and their pore size increased significantly, which improved their waterresistance ability. XPS and UV-vis detection showed that $5Fe/Ga_2O_3$ -Al₂O₃ had a high content of free Fe³⁺, which contributed to the medium-high temperature activity. The H2-TPR results showed that the introduction of Fe elevated the redox capacity of the catalysts and enhanced the medium-high temperature reduction activity of the original Ga₂O₃-Al₂O₃. Py-FT-IR results showed that both Lewis acid and Brønsted acid existed on the surface of the catalysts, and the introduction of Fe raised the content of the Lewis acid. Therefore, Fe modification of Ga_2O_3 -Al₂O₃ is an effective method to improve the performance of SCR-CH₄ of Ga_2O_3 -Al₂O₃. **Keywords** selective catalytic reduction; NO; CH₄; Fe/Ga₂O₃-Al₂O₃ catalyst