-
甲硫醇(CH3SH)是污水处理厂臭气中的主要特征污染物[1],具有强烈的刺激性气味[2]、嗅阈值低和高腐蚀等特性[3],是一种具有较高毒性的含硫挥发性有机化合物(VOCs)[4]。目前,对甲硫醇的去除技术主要包括氧化法、吸收法、吸附法和生物法等[5-6],其中的吸附法因具有简便高效的优势被广泛用于臭气处理[7-9]。活性炭作为常用的吸附材料,具有性能稳定、抗腐蚀等优点,但再生及更换频繁、除臭成本较高[10]。通过提高活性炭的吸附量,可延长其使用时间,减少再生及更换频次。
为提高活性炭的吸附量,通常采用碱溶液[11]、金属溶液[12]或氧化剂浸渍方法,修饰其表面的物理化学结构,以改善对甲硫醇的吸附性能[13]。相较碱溶液和金属溶液,氧化剂浸渍改性在使活性炭表面含氧官能团增加的同时,可以有效氧化扩大其内部微孔,进一步提升吸附性能而被普遍采用。目前,常用于活性炭改性的氧化剂有HNO3、H2O2和KMnO4等,而不同氧化剂改性对活性炭表面含氧官能团的修饰作用各异。其中HNO3[14]和H2O2[15]等改性后表面主要为羧酸、内酯和酚类等酸性基团,而KMnO4[16]改性则可以产生碳羰基、酮类和醚类等中性或碱性基团。由于甲硫醇呈偏酸性,碱性基团的存在更有利于活性炭对甲硫醇的吸附,因此,从理论上来讲,KMnO4改性可以较好地提高活性炭对于甲硫醇的吸附性能。但目前关于KMnO4改性活性炭的研究主要集中于对液相金属离子等污染物的去除,而用于甲硫醇吸附的研究鲜有报道。
本研究通过小试实验,采用KMnO4浸渍改性活性炭,在优化浸渍液浓度、浸渍时间、浸渍温度和浸渍比等条件的基础上,获得较优的改性活性碳;通过全自动比表面积和孔径分析仪、扫描电子显微镜和Boehm滴定法等表征其材料特性,揭示KMnO4改性活性炭对甲硫醇吸附量提高的原因;研究改性活性炭吸附甲硫醇的动力学和热力学特征,为甲硫醇吸附处理的实际应用提供参考。
KMnO4改性活性炭对臭气中甲硫醇的吸附特性
Adsorption characteristics of methyl mercaptan in odor by KMnO4 modified activated carbon
-
摘要: 针对普通活性炭对污水厂臭气中甲硫醇吸附量低的问题,采用KMnO4浸渍改性以获得高甲硫醇吸附量的改性活性炭,通过低温氮吸附仪、扫描电子显微镜和Boehm滴定等表征揭示改性后活性炭吸附量提高的原因,并进行改性活性炭吸附甲硫醇的动力学和热力学研究。结果表明:在KMnO4浓度为1%、温度为25 ℃、活性炭与浸渍液质量比为8∶100的条件下浸渍6 h,改性活性炭对甲硫醇的静态吸附量最高,达到344.22 mg·g−1,是未改性前的4.04倍:改性活性炭对甲硫醇吸附量提高的原因主要是表面碱性基团的增加(是原来的2.53倍),以及微孔容积和比表面积的增加。改性活性炭对甲硫醇的吸附符合准二级动力学模型,同时粒子内扩散模型显示吸附过程由气相扩散和内扩散共同作用;符合Freundlich吸附等温方程,具有多层吸附特征,且吸附容易进行,属于优惠吸附,是一个自发、放热和熵减的过程,升温不利于对甲硫醇的吸附。Abstract: Aiming at low adsorption capacity of methyl mercaptan in odor emitted from wastewater treatment plant by the common activated carbon, KMnO4 was used to modify activated carbon and produce a modified activated carbon with high adsorption capacity of methyl mercaptan. Low temperature nitrogen adsorption apparatus, scanning electron microscope and Boehm titration analysis were used to characterize the modified activated carbon and reveal the reason for the increase of its adsorption capacity. At the same time, the adsorption kinetics and thermodynamics of methyl mercaptan by the modified activated carbon were also studied. The results showed that the modified activated carbon presented the highest static adsorption capacity of 344.22 mg·g−1 toward methyl mercaptan, which was 4.04 times of the common activated carbon, under the conditions of KMnO4 concentration of 1%, 25 ℃, the mass ratio of activated carbon to impregnation of 8∶100 and impregnation time of 6 h. The reasons for the increase of the adsorption capacity of the modified activated carbon were as follows: the increase of alkaline groups on surface, which was 2.53 times of the common activated carbon, microporous volume and pore specific surface area. The adsorption characteristics of modified activated carbon to methyl mercaptan were in accordance with the pseudo-second-order kinetics model. The weber and morris model indicated that above adsorption process was affected by joint actions of gas-phase diffusion and internal diffusion. The adsorption isotherm fitted Freundlich equation, and belonged to multiplayer adsorption, and was easily carried out as a type of preferential adsorption. Moreover, the adsorption was a spontaneous, exothermic and entropy reduction process, the increase of temperature was not conducive to methyl mercaptan adsorption.
-
Key words:
- potassium permanganate /
- activated carbon modification /
- methyl mercaptan /
- adsorption /
- odor
-
表 1 活性炭改性前后的孔结构参数
Table 1. Pore structure parameters of activated carbons before and after modification
样品 总孔比表
面积/(m2·g−1)微孔比表
面积/(m2·g−1)微孔容积/
(m3·g−1)未改性 708.9 544.3 0.221 KMnO4改性 772.7 641.8 0.258 表 2 活性炭改性前后的酸碱基团数量
Table 2. Amounts of acid-base groups of activated carbons before and after modification
样品 酸性基团/
(mmol·g−1)碱性基团/
(mmol·g−1)总基团/
(mmol·g−1)未改性 0.99 0.66 1.65 KMnO4改性 0.95 1.53 2.48 表 3 改性活性炭吸附甲硫醇的等温吸附模型参数
Table 3. Isothermal adsorption model parameters adsorption of methyl mercaptan by modified activated carbon
温度/℃ Langmuir模型 Freundlich模型 KL qc R2 KF 1/n R2 15 0.076 7 126.91 0.891 1 35.869 0 0.206 9 0.985 4 25 0.039 8 107.42 0.897 2 24.284 2 0.231 8 0.991 4 40 0.013 2 101.46 0.824 4 16.866 7 0.259 2 0.991 0 60 0.010 6 83.22 0.800 5 11.639 2 0.279 0 0.990 8 表 4 改性活性炭吸附甲硫醇的热力学参数
Table 4. Thermodynamic parameters of adsorption of methyl mercaptan by modified activated carbon
温度/℃ lnKd ΔG/(kJ·mol−1) ΔH/(kJ·mol−1) ΔS/(J·mol−1) 15 5.155 0 −12.34 −24.81 −43.28 25 4.651 8 −11.52 −24.81 −44.57 40 4.175 3 −10.86 −24.81 −44.55 60 3.730 6 −10.32 −24.81 −43.48 -
[1] 林雪君, 姜应和, 李雯晗, 等. 乙醇溶液中水的配比对甲硫醇去除效果的影响[J]. 环境科学与技术, 2017, 40(12): 198-202. [2] 张妍, 王元刚, 卢志强, 等. 我国餐厨废物生化处理设施恶臭排放特征分析[J]. 环境科学, 2015, 36(10): 3603-3610. [3] WILLIAM E L, MEAGAN E B. Methyl mercaptan[J]. Journal of Chemical Health and Safety, 2015, 22(5): 452-458. [4] LING D, LIU T X, LI X Z, et al. Removal of CH3SH with in-situ generated ferrate(VI) in a wet-scrubbing reactor[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 455-461. [5] 李华琴, 何觉聪, 陈洲洋. 低温等离子体-生物法处理硫化氢气体研究[J]. 环境科学, 2014, 35(4): 1256-1262. [6] 李建军, 廖东奇, 许玫英, 等. 生物滴滤池对BTEX的去除及相应细菌群落分析[J]. 环境科学, 2013, 34(7): 2552-2559. [7] 刘江平, 何德东, 陆继长, 等. 稀土改性催化剂催化分解甲硫醇的研究进展[J]. 中国稀土学报, 2017, 35(5): 559-570. [8] 刘寒冰, 杨兵, 薛南冬. 酸碱改性活性炭及其对甲苯吸附的影响[J]. 环境科学, 2016, 37(9): 3670-3678. [9] CHOU M S, CHIOU J H. Modeling effects of moisture on adsorption capacity of activated carbon for VOCs[J]. Journal of Environmental Engineering, 2015, 123(5): 437-443. doi: 10.1061/(ASCE)0733-9372(1997)123:5(437) [10] NIGAR H, NAVASCUES N, DE LA IGLESIAB O, et al. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation & Purification Technology, 2015, 151: 193-200. [11] 马楠, 田耀金, 杨广平, 等. 改性活性碳纤维电芬顿降解苯酚废水性能研究[J]. 环境科学, 2014, 35(7): 2627-2632. [12] VEGA E, SANCHEZ-POLOB M, GONZALEZ-OLMOSAC R, et al. Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation[J]. Journal of Colloid & Interface Science, 2015, 45(7): 78-85. [13] 张梦竹, 李琳, 刘俊新, 等. 碱改性活性炭表面特征及其吸附甲烷的研究[J]. 环境科学, 2013, 34(1): 39-44. [14] 刘蕊, 罗璇, 刘兴. 不同温度制备的HNO3改性生物炭结构表征研究[J]. 贵州师范学院学报, 2018, 34(6): 21-24. doi: 10.3969/j.issn.1674-7798.2018.06.005 [15] 韩鹏, 任爱玲, 郭斌, 等. 过氧化氢改性活性炭对三甲胺废气的吸附[J]. 河北科技大学学报, 2013, 34(2): 159-165. doi: 10.7535/hbkd.2013yx02014 [16] 蒋昕楠, 孔振凯, 王际童, 等. 高锰酸钾改性球形中孔炭的甲醛吸附性能[J]. 环境工程学报, 2018, 12(6): 1676-1682. doi: 10.12030/j.cjee.201712079 [17] 范少蓓. 氧化锰改性活性炭的优化制备及其对Cd的吸附[D]. 长沙: 湖南大学, 2017. [18] 田小云. 磷酸活化法核桃壳颗粒活性炭的制备工艺优化及改性研究[D]. 南京: 东南大学, 2017. [19] 曹晓强, 张浩, 黄学敏. 微波解吸-催化燃烧净化甲苯研究[J]. 环境科学, 2013, 34(7): 2546-2551. [20] LIU Q, KE M, YU P, et al. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon[J]. MATEC Web of Conferences, 2016, 63: 1-4. [21] 李川, 刘元慧, 王让, 等. 改性石英砂吸附水中四环素的机制研究[J]. 中国给水排水, 2019, 35(3): 71-77. [22] 王洪麒, 李建华, 刘佳, 等. 捕收剂K64与辉钼矿吸附等温模型及吸附动力学研究[J]. 矿产综合利用, 2019(2): 134-139. doi: 10.3969/j.issn.1000-6532.2019.02.028