-
当前,随着工业化进程的加快推进,工业排放的二氧化硫造成的一系列环境问题日益严重,给国民的健康和经济带来了巨大的挑战,更难以满足人民群众对优美生态环境的需要[1-3]。据报道[4-5],2019年度SO2的排放要比往年下降3%,其中京津冀和周边城市、长三角区域、汾渭平原区域等,都属于传统资源产业聚集的地方,是煤炭、钢铁等的主要产地,而钢铁、煤炭等的大量使用必然会产生SO2,因此,应将这些地区作为重点管理区域,集中开展“控硫”整治。
为了控制二氧化硫的超标排放,我国已展开了多种脱硫技术的研发和应用。目前常见的烟气脱硫技术按工艺特性分为干法、半干法和湿法[6-7]。其中,湿法脱硫具有初期投资费用高、系统复杂、设备占地面积大、消耗能源多、对设备有严重的腐蚀、产生的脱硫产物可对管道堵塞,且有新的污染物—脱硫废水的产生等问题[8-9],而干法烟气脱硫技术具有操作简单、初期运行投资低、腐蚀小等优点,因此,它将是未来控制SO2排放的大势所趋,而脱硫效率较低始终制约着该技术的发展,制备高性能的脱硫剂和确定较优脱硫条件对提高干法烟气脱硫效率起至关重要的作用[10-12]。
干法烟气脱硫中水的作用必不可少,在脱硫塔内水有2个重要作用[13-15]:首先,水可以起到增加烟气湿度的目的,形成必要的反应条件;其次,由于入口烟气温度较高,反应能力较弱,须创造较低温度的脱硫环境,但此部分作用较弱,所以本实验中加入水量的多少用相对湿度来衡量。在脱硫塔内,相对湿度越大,反应效率越高。但随着相对湿度的不断提高,过多的水分会引起脱硫塔的阻塞和黏壁,甚至造成脱硫塔停止运行,不利于烟气的净化排放,所以合适的相对湿度在干法烟气脱硫中尤其重要[16]。
本研究利用自建的干法烟气脱硫反应实验台,探讨了相对湿度对干法烟气脱硫效率的影响,并验证了钙基脱硫剂在干法脱硫中的可行性,最后得到了较优的相对湿度,为干法脱硫条件提供参考。
相对湿度对钙基脱硫剂干法烟气脱硫效率的影响
Effect of relative humidity on dry flue gas desulfurization by calcium-based desulfurizer
-
摘要: 为得到干法烟气脱硫较优的相对湿度,并验证钙基脱硫剂在干法烟气脱硫中的可行性,在模拟干法烟气脱硫实验台上,研究了钙基脱硫剂在不同相对湿度(0~45%)条件下,脱硫剂的出口浓度、脱硫效率和固硫量。结果表明,在相对湿度从0变化至45%时,可以稳定运行的穿透时间由160 min增加到720 min,可达100%脱硫效率的运行时间由0增至580 min,脱硫剂的固硫量从43.37 mg增加到332.09 mg;增加相对湿度能显著提高烟气脱硫效率,在保证烟气不穿透物料且不出现黏壁现象的条件下,较优的相对湿度为45%。研究明确了在低相对湿度条件下此种脱硫剂的可行性并确定了较优化的干法脱硫湿度,为干法脱硫条件的选择提供了参考。Abstract: Dry flue gas desulfurization (DFGD) is an increasingly attractive technique in SO2 emission control. However, the low efficiency in dry desulphurization is the bottleneck of this technology. To find a high-performance desulfurizer is an urgent task. In this study, through the influence of different relative humidity on the characteristics of the same desulfurizer on the self-built dry flue gas desulfurization test bench, the feasibility of this kind of desulfurizer in dry desulfurization was clarified, and the optimum relative humidity of this experiment was determined. The results showed that when the relative humidity increased from 0 to 45%, the breakthrough time for stable running increased from 160 to 720 min, the working time for 100% desulfurization efficiency increased from 0 to 580 min, and the total sulfur fixation of the desulfurizer also increased from 43.37 mg to 332.09 mg. The increase of relative humidity could significantly improve the desulfurization efficiency of flue gas. Under the conditions without material penetrating and sticking wall phenomenon for flue gas, the relative humidity was as high as possible, and its optimum value of the experimental conditions was 45%. The results provide theoretical guidance for the condition selection of dry flue gas desulfurization.
-
-
[1] REN S H, HOU Y C, ZHANG K, et al. Ionic liquids: Functionalization and absorption of SO2[J]. Green Energy & Environment, 2018, 3(3): 179-190. [2] 孔德婧. 大气SO2危害与浓度检测方法研究[J]. 民营科技, 2018, 1(6): 65. [3] QU Z B, SUN F, LIU X, et al. The effect of nitrogen-containing functional groups on SO2 adsorption on carbon surface: Enhanced physical adsorption interactions[J]. Surface Science, 2018, 677(1): 78-82. [4] 李焱, 赵纪光, 凡明, 等. 固定床活性炭干法烟气脱硫过程的模拟研究[J]. 化工环保, 2016, 36(3): 317-320. doi: 10.3969/j.issn.1006-1878.2016.03.016 [5] 伍洋. 打赢蓝天保卫战具体措施与难点分析[J]. 资源节约与环保, 2019, 1(4): 186-186. doi: 10.3969/j.issn.1673-2251.2019.04.154 [6] LIU X W. Progress of desulfurization and denitration technology of flue gas in China[J]. IOP Conference Series: Earth and Environmental Science, 2019, 242(4): 1755-1315. [7] YAN J, YUAN W H, LIU J, et al. An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant[J]. Journal of Cleaner Production, 2019, 228(1): 63-72. doi: 10.1016/j.jclepro.2019.04.227 [8] SALEHI E, EIDI B, SOLEIMANI Z. An integrated process consisting of Mg(OH)2 impregnated ceramic foam filters as adsorbent and Mg(OH)2 as scrubbing solution for intensified desulfurization of flue gas[J]. Separation and Purification Technology, 2019, 216(1): 34-42. doi: 10.1016/j.seppur.2019.01.072 [9] BURGESS-CONFORTI J R, MILLER D M, BRYE K R, et al. Plant uptake of major and trace elements from soils amended with a high-calcium dry flue gas desulfurization by-product[J]. Fuel, 2017, 208: 514-521. doi: 10.1016/j.fuel.2017.07.056 [10] CHEN L M, STEHOUWER R, TONG T G, et al. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses[J]. Chemosphere, 2015, 134(1): 459-465. doi: 10.1016/j.chemosphere.2015.05.014 [11] ZHOU Y G, PENG P, ZHU X, et al. Hydrodynamics of gas-solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization[J]. Powder Technology, 2010, 205(1): 208-216. [12] 陈奎续, 别璇, 刘园园, 等. 燃煤电厂干法脱硫技术研究进展[J]. 电力科技与环保, 2018, 34(5): 9-12. doi: 10.3969/j.issn.1674-8069.2018.05.003 [13] BERNARD L, FRECHE M, LACOUT J L, et al. Modeling of the dissolution of calcium hydroxide in the preparation of hydroxyapatite by neutralization[J]. Chemical Engineering Science, 2000, 55(23): 5683-5692. doi: 10.1016/S0009-2509(00)00205-0 [14] FERNANDEZ I, GAREA A, IRABIEN A. SO2 reaction with Ca(OH)2 at medium temperatures (300~425 °C)[J]. Chemical Engineering Science, 1998, 53(10): 1869-1881. doi: 10.1016/S0009-2509(98)00029-3 [15] MILLO F, RAFIGH M, ANDREATA M, et al. Impact of high sulfur fuel and desulfation process on a close-coupled diesel oxidation catalyst and diesel particulate filter[J]. Fuel, 2017, 198: 58-67. doi: 10.1016/j.fuel.2017.01.006 [16] 宗润宽, 苏艳霞, 田天, 等. 钙基烟气脱硫剂制备的实验研究[J]. 环境污染治理技术与设备, 2001, 2(2): 25-30. [17] WANG D, YU J, CHANG L, et al. Effects of addition of Mo on the sulfidation properties of Fe-based sorbents supported on fly ash during hot coal gas desulfurization[J]. Chemical Engineering Journal, 2011, 166(1): 362-367. doi: 10.1016/j.cej.2010.11.008 [18] 赵毅, 王小明, 汪黎东. Ca(OH)2颗粒脱硫反应的动力学研究[J]. 电力环境保护, 2005, 21(1): 21-23. [19] KRAMMER G, REISSNER H K, STAUDINGER G. Cyclic activation of calcium hydroxide for enhanced desulfurization[J]. Chemical Engineering & Processing, 2002, 41(1): 463-471. [20] CHANG J, TIAN H, JIANG J, et al. Simulation and experimental study on the desulfurization for smelter off-gas using a recycling Ca-based desulfurizer[J]. Chemical Engineering Journal, 2016, 291: 225-237. doi: 10.1016/j.cej.2015.12.064 [21] 高翔, 骆仲泱, 倪明江, 等. 喷钙脱硫系统中增湿活化装置的脱硫性能研究: 模型的建立[J]. 中国电机工程学报, 1999, 19(1): 29-33. [22] MI J, REN J, ZHANG Y. Preparation of modified semi-coke-supported ZnFe2O4 sorbent with the assistance of ultrasonic irradiation[J]. Environmental Engineering Science, 2012, 29(11): 1026-1031. doi: 10.1089/ees.2011.0434 [23] HUANG C, XU T, YANG X. Regenerating fuel-gas desulfurizing agents by using bipolar membrane electrodialysis (BMED): Effect of molecular structure of alkanolamines on the regeneration performance[J]. Environmental Science & Technology, 2007, 41(3): 984-989. [24] 林俊森. 煤层露头火区在自然通风影响下燃烧特性的研究[D]. 包头: 内蒙古科技大学, 2015. [25] 李泽华. 高水蒸气气氛下煤燃烧对CaO再生及循环活性影响的研究[D]. 武汉: 华中科技大学, 2017. [26] NISHIWAKI F, INAGAKI T, KANO J, et al. Development of disc-type intermediate-temperature solid oxide fuel cell[J]. Journal of Power Sources, 2006, 157(2): 809-815. doi: 10.1016/j.jpowsour.2006.01.003