-
挥发性有机物(VOCs)是导致城市雾霾与光化学污染等大气复合污染的重要前体物,对人类健康和生态环境产生重大影响,已经引起了政府和公众的广泛关注[1-3]。因此,打好蓝天保卫战,VOCs治理是关键。在众多VOCs末端控制技术中,催化氧化技术因其具有高效性和彻底性等优势引起了学界的极大关注[4-5]。催化氧化技术的核心问题是开发出高效稳定且具有低温活性的新型催化剂[4-6]。一般而言,能够催化降解VOCs的催化剂有贵金属和过渡金属2大类,其中,贵金属催化剂具有催化活性高、稳定性差等特点,此外,贵金属催化剂因其价格昂贵和易中毒失活使其在工业应用中受到了极大的限制[5]。因此,研究开发低温高效的过渡金属氧化物催化剂成为了目前研究的热点[4-5, 7]。
近年来,Mn-Ce复合氧化物催化剂因具有良好的催化氧化性能受到了研究人员极大的关注[7-11]。Mn-Ce复合氧化物一方面具备CeO2优异的储氧/释氧能力[12-13],另一方面MnOx具有环保、廉价易得且存在多种价态等优点[14-17]。然而传统制备工艺合成的Mn-Ce催化剂存在颗粒易团聚和形貌不可控等问题,这在一定程度上限制了该类催化剂的改进和应用。本研究通过简单的水热合成法制备了一系列Mn-Ce复合氧化物催化剂,有望解决上述提及的问题。
目前研究结果表明,纳米材料在催化过程中具有形貌效应[15-17],将其应用于催化氧化VOCs方面也取得了大量的研究成果[6-7, 12]。纳米材料的催化性能与其形貌特性密切相关。LIAO等[7]通过水热法制备的具有纳米棒形貌的Mn-Ce复合氧化物催化剂在反应温度225 ℃下即可实现甲苯的完全降解。YU等[11]采用溶胶凝胶法制备了一系列MnOx/TiO2和MnOx-CeO2/TiO2催化剂,考察了Ce添加量对催化降解性能的影响,结果表明MnOx-CeO2/TiO2(Ce/Ti=0.05)催化剂活性最高(T90=180 ℃),高度分散的无定型Mn及催化剂表面存在大量活性氧物种是其具有优异低温催化氧化甲苯性能的关键。郑宽等[18]通过共沉淀法制备不同Mn/Ce比的复合氧化物,发现Mn-Ce复合氧化物催化剂的甲苯催化降解性能高于单一MnOx和CeO2。大多数报道的催化剂均未通过对催化剂形貌进行控制从而调控催化剂的反应活性[5, 18]。因此,本研究以具有表面纳米针的氧化锰微球为基础,通过在水热前驱液中加入不同含量的Ce,原位合成出具有一定形貌的Mn-Ce复合氧化物,通过SEM、XRD、H2-TPR、O2-TPD、BET及拉曼光谱等手段对所合成的复合材料进行表征,并深入研究分析催化剂催化氧化甲苯的构效关系。
Mn-Ce复合氧化物微球的制备及其催化氧化甲苯性能
Preparation of Mn-Ce composite oxide microspheres and their performance on toluene catalytic oxidation
-
摘要: 为了开发高效稳定、具有低温活性的降解VOCs催化材料,采用传统水热法制备了一系列不同锰铈比的催化剂(MnO2、Mn0.95Ce0.05Ox、Mn0.90Ce0.10Ox、Mn0.80Ce0.20Ox及Mn0.60Ce0.40Ox),利用SEM、BET、XRD、H2-TPR、O2-TPD、拉曼光谱等技术对催化剂的物理化学性质进行了表征分析,同时考察了其对甲苯的催化氧化活性。结果表明:通过简单的水热合成法合成出的Mn-Ce复合氧化物均为微球,但Ce的加入使得微球催化剂表面的纳米针消失,变为光滑的微球体;而不同的催化剂在氧化甲苯时呈现不同的催化氧化性能,其中Mn0.80Ce0.20Ox具有最佳的甲苯氧化性能,这是由于其具有较强的氧化还原性能、较高的化学吸附氧含量及存在Mn-Ce固溶体。因此,通过控制催化剂中Ce含量,可调控催化剂的形貌和物理化学特性,从而使Mn-Ce复合氧化物在甲苯催化氧化中展现出优异的催化性能。研究结果为新型高效降解VOCs催化材料的设计和开发提供了新思路。
-
关键词:
- 催化氧化 /
- Mn-Ce复合氧化物 /
- 甲苯 /
- 固溶体
Abstract: In order to develop high-efficient, stable and low temperature active catalytic materials for VOCs degradation, a series of Mn-Ce catalysts with various Mn/Ce mole ratios (MnO2, Mn0.95Ce0.05Ox, Mn0.90Ce0.10Ox, Mn0.80Ce0.20Ox & Mn0.60Ce0.40Ox) were prepared by a traditional hydrothermal synthesis method. The physicochemical properties of these catalysts were characterized and analyzed by SEM, BET, XRD, H2-TPR, O2-TPD and Raman spectroscopy, and their catalytic oxidation of toluene was investigated. The results indicated that Mn-Ce composite oxides prepared by simple hydrothermal synthesis method were microspheres, while Ce addition caused the disappearance of the nano-needle borne on the catalyst surfaces and the formation of smooth microspheres. The catalysts with various Mn/Ce mole ratios exhibited different catalytic activity for toluene oxidation, of which Mn0.80Ce0.20Ox had the best performance, this was ascribed to its strong redox properties, high chemisorbed-oxygen content and the existence of Mn-Ce solid solution. Thus, the morphology and physicochemical properties of the catalysts could be regulated by controlling the Ce content, which enabled these Mn-Ce composite oxides to exhibit excellent catalytic performance in toluene oxidation. This study provided a new idea for the design and development of novel VOCs catalytic materials with high efficiency.-
Key words:
- catalytic oxidation /
- Mn-Ce composite oxides /
- toluene /
- solid solution
-
表 1 不同Mn-Ce复合氧化物微球催化剂的比表面积、孔容和孔径
Table 1. BET surface areas, pore volumes and pore diameters of different Mn-Ce composite oxide microspheres catalysts
催化剂 比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm MnO2 77.97 0.29 14.91 Mn0.95Ce0.05Ox 74.62 0.33 8.19 Mn0.90Ce0.10Ox 162.29 0.26 6.48 Mn0.80Ce0.20Ox 109.54 0.15 5.48 Mn0.60Ce0.40Ox 68.07 0.30 17.57 -
[1] 王倩, 陈长虹, 王红丽, 等. 上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013, 34(2): 424-433. [2] 陆克定, 张远航, 苏杭, 等. 珠江三角洲夏季臭氧区域污染及其控制因素分析[J]. 中国科学(化学), 2010, 40(4): 407-420. [3] 马永亮, 谭吉华, 贺克斌, 等. 佛山灰霾期挥发性有机物的污染特征[J]. 环境科学, 2011, 32(12): 3549-3554. [4] LI W B, CHU W B, ZHUANG M, et al. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catalysis Today, 2004, 93-95: 205-209. doi: 10.1016/j.cattod.2004.06.042 [5] HUANG H B, XU Y, FENG Q Y, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catalysis Science Technology, 2015, 5: 2649-2669. doi: 10.1039/C4CY01733A [6] 鲁美娟, 杨文亭, 喻成龙, 等. 等离子体协同催化降解VOCs过程中O3的作用机理[J]. 化工进展, 2018, 37(7): 2649-2654. [7] LIAO Y N, FU M L, CHEN L M, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 93-95: 205-209. [8] SAQER S M, KONDARIDES D I, VERYKIOS X E, et al. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Applied Catalysis B: Environmental, 2011, 103(3/4): 275-286. doi: 10.1016/j.apcatb.2011.01.001 [9] TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. doi: 10.1016/j.apcatb.2005.08.004 [10] DAI Y, WANG X Y, DAI Q G, et al. Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2012, 111-112: 141-149. doi: 10.1016/j.apcatb.2011.09.028 [11] YU D Q, LIU Y, WU Z B, et al. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catalysis Communications, 2010, 11(8): 788-791. doi: 10.1016/j.catcom.2010.02.016 [12] WU X D, LIU S, WENG D W, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation: Activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 283-290. [13] TIKHOMIROV K, KRÖCHER O, ELSENER M, et al. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot[J]. Applied Catalysis B: Environmental, 2006, 64(1/2/3): 72-78. doi: 10.1016/j.apcatb.2005.11.003 [14] SANTOS V P, PEREIRA M F R. The role of lattice oxygen on the activity manganese oxides towards the oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 353-363. doi: 10.1016/j.apcatb.2010.07.007 [15] PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2016, 306: 1234-1246. [16] LIAO Y N, XUAN Z, PENG R S, et al. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal[J]. Applied Surface Science, 2017, 405: 20-28. doi: 10.1016/j.apsusc.2017.02.012 [17] LI Y, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chemical Engineering Journal, 2017, 330: 213-222. doi: 10.1016/j.cej.2017.07.018 [18] 郑宽, 付名利, 吴军良, 等. 氧化甲苯的MnOx-CeO2催化剂表面活性物种研究[J]. 环境科学学报, 2014, 34(2): 2885-2891. [19] YUAN A B, WANG X L, WANG Y Q, et al. Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route[J]. Electrochimica Acta, 2009, 54(3): 1021-1026. doi: 10.1016/j.electacta.2008.08.057 [20] 廖银念, 张璇, 牛文浩, 等. 不同形貌氧化锰催化降解甲苯的性能研究[J]. 环境工程, 2018, 36(1): 62-66. doi: 10.11835/j.issn.1005-2909.2018.01.015 [21] YU C L, DONG L F, CHEN F, et al. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: A comparative study[J]. Environmental Technology, 2017, 38(8): 1030-1042. doi: 10.1080/09593330.2016.1216170 [22] WANG L S, HUANG B C, SU Y X, et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241. doi: 10.1016/j.cej.2012.04.012 [23] HE C, YU Y K, YUE L, et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol[J]. Applied Catalysis B: Environmental, 2014, 147: 155-166. [24] WANG F, DAI H X, DENG J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46: 4034-4041. [25] CHEN Y X, HUANG Z W, ZHOU M J, et al. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement[J]. Environmental Science & Technology, 2017, 51: 2304-2311. [26] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408 [27] JULIEN C, MASSOT M, RANGAN S, et al. Study of structural defects in g-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33: 223-228. doi: 10.1002/jrs.838 [28] HE H, LIN X T, LI S J, et al. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 233: 134-142. doi: 10.1016/j.apcatb.2017.08.084