[1] |
王倩, 陈长虹, 王红丽, 等. 上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013, 34(2): 424-433.
|
[2] |
陆克定, 张远航, 苏杭, 等. 珠江三角洲夏季臭氧区域污染及其控制因素分析[J]. 中国科学(化学), 2010, 40(4): 407-420.
|
[3] |
马永亮, 谭吉华, 贺克斌, 等. 佛山灰霾期挥发性有机物的污染特征[J]. 环境科学, 2011, 32(12): 3549-3554.
|
[4] |
LI W B, CHU W B, ZHUANG M, et al. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catalysis Today, 2004, 93-95: 205-209. doi: 10.1016/j.cattod.2004.06.042
|
[5] |
HUANG H B, XU Y, FENG Q Y, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catalysis Science Technology, 2015, 5: 2649-2669. doi: 10.1039/C4CY01733A
|
[6] |
鲁美娟, 杨文亭, 喻成龙, 等. 等离子体协同催化降解VOCs过程中O3的作用机理[J]. 化工进展, 2018, 37(7): 2649-2654.
|
[7] |
LIAO Y N, FU M L, CHEN L M, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 93-95: 205-209.
|
[8] |
SAQER S M, KONDARIDES D I, VERYKIOS X E, et al. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Applied Catalysis B: Environmental, 2011, 103(3/4): 275-286. doi: 10.1016/j.apcatb.2011.01.001
|
[9] |
TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. doi: 10.1016/j.apcatb.2005.08.004
|
[10] |
DAI Y, WANG X Y, DAI Q G, et al. Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2012, 111-112: 141-149. doi: 10.1016/j.apcatb.2011.09.028
|
[11] |
YU D Q, LIU Y, WU Z B, et al. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catalysis Communications, 2010, 11(8): 788-791. doi: 10.1016/j.catcom.2010.02.016
|
[12] |
WU X D, LIU S, WENG D W, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation: Activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 283-290.
|
[13] |
TIKHOMIROV K, KRÖCHER O, ELSENER M, et al. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot[J]. Applied Catalysis B: Environmental, 2006, 64(1/2/3): 72-78. doi: 10.1016/j.apcatb.2005.11.003
|
[14] |
SANTOS V P, PEREIRA M F R. The role of lattice oxygen on the activity manganese oxides towards the oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 353-363. doi: 10.1016/j.apcatb.2010.07.007
|
[15] |
PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2016, 306: 1234-1246.
|
[16] |
LIAO Y N, XUAN Z, PENG R S, et al. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal[J]. Applied Surface Science, 2017, 405: 20-28. doi: 10.1016/j.apsusc.2017.02.012
|
[17] |
LI Y, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chemical Engineering Journal, 2017, 330: 213-222. doi: 10.1016/j.cej.2017.07.018
|
[18] |
郑宽, 付名利, 吴军良, 等. 氧化甲苯的MnOx-CeO2催化剂表面活性物种研究[J]. 环境科学学报, 2014, 34(2): 2885-2891.
|
[19] |
YUAN A B, WANG X L, WANG Y Q, et al. Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route[J]. Electrochimica Acta, 2009, 54(3): 1021-1026. doi: 10.1016/j.electacta.2008.08.057
|
[20] |
廖银念, 张璇, 牛文浩, 等. 不同形貌氧化锰催化降解甲苯的性能研究[J]. 环境工程, 2018, 36(1): 62-66. doi: 10.11835/j.issn.1005-2909.2018.01.015
|
[21] |
YU C L, DONG L F, CHEN F, et al. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: A comparative study[J]. Environmental Technology, 2017, 38(8): 1030-1042. doi: 10.1080/09593330.2016.1216170
|
[22] |
WANG L S, HUANG B C, SU Y X, et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241. doi: 10.1016/j.cej.2012.04.012
|
[23] |
HE C, YU Y K, YUE L, et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol[J]. Applied Catalysis B: Environmental, 2014, 147: 155-166.
|
[24] |
WANG F, DAI H X, DENG J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46: 4034-4041.
|
[25] |
CHEN Y X, HUANG Z W, ZHOU M J, et al. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement[J]. Environmental Science & Technology, 2017, 51: 2304-2311.
|
[26] |
HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408
|
[27] |
JULIEN C, MASSOT M, RANGAN S, et al. Study of structural defects in g-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33: 223-228. doi: 10.1002/jrs.838
|
[28] |
HE H, LIN X T, LI S J, et al. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 233: 134-142. doi: 10.1016/j.apcatb.2017.08.084
|