-
农村污水的分质收集处理是农村污水资源化的重要方式。农村生活污水按照其污水来源和水质特征的不同,可以大致分为灰水和黑水2大类。其中,灰水是指不包括冲厕污水(黑水)在内的生活杂排水,主要包括餐厨污水、洗涤污水和洗浴污水等[1-2]。灰水由于基本不含肠道病原微生物、污染物浓度较低且易于自然生物处理的特点,具有很高的直接回用价值[1]。为缓解水资源压力,灰水单独采用管道收集并直接用于灌溉的回用方式已经得到了一定的应用[3]。而农村污水治理工程设施投资中的管道敷设成本占所有建设投资的70%以上,管道敷设成本过高直接限制了农村地区污水收集治理工作的有效开展[4-5]。小管径重力流排水系统具有管道成本低、施工开挖土方量少、建设迅速等诸多优点,非常适用于经济条件相对落后的农村地区[6-7]。基于此,小管径重力流灰水管道系统具有明显的经济优势和生态环境效益,具有较大的推广潜力和应用前景。
排水管道生物膜具有一定的污水预处理功能,并且可能产生CH4、H2S等具有环境和健康风险的气体,对于市政排水管道生物膜的微生物群落特征已经有了相对广泛的研究[8-10]。然而,农村污水特征与市政排水相比,其水质水量具有明显的随时间变化规律,即每天在用餐时段污水水量较大,而夜间基本没有污水排放[11]。具体到管道容量较小的小管径系统中,在早中晚时段,污水排放高峰期,管道经常临近满管流状态;而在夜间,基本处于断流状态。不同的流态决定了不能直接套用市政污水管道生物膜数据来解析农村污水管道生物膜,当前对于农村污水管道生物膜的认识仍处于起步阶段,更是罕有针对农村灰水管道生物膜的研究。
本研究采用实验室规模的小管径重力流灰水管道系统,研究了小管径重力流灰水管道生物膜的细菌群落、氮硫循环管道功能菌特征以及氮循环功能基因分布情况,重点探讨了管道敷设坡度对于小管径重力流灰水管道生物膜细菌群落的影响。本研究丰富了排水管道生物膜认知体系,为小管径重力流灰水管道的优化设计和应用提供了参考。
农村小管径重力流灰水管道中生物膜细菌群落的特征
Characteristics of bacterial communities in the biofilms of rural gray water small diameter gravity sewer systems
-
摘要: 为探究农村小管径重力流灰水管道系统生物膜的细菌群落结构特征,建立了一套模拟真实农村环境条件下水量变化且具有3组坡度参数(5‰,10‰,15‰)的小管径灰水管道实验设备,利用Illumina HiSeq高通量测序技术,分析了连续运行60 d后的管道生物膜的细菌群落特征。结果表明:Proteobacteria、Actinobacteria和Bacteroidetes为优势菌门,优势菌属为Paenarthrobacte、Ensifer和Spingopyxis,坡度变化会显著影响生物膜细菌群落组成;小管径重力流灰水管道生物膜中存在一定丰度的反硝化细菌和硝化细菌,具有生物脱氮功能。通过PICRUSt功能预测发现,高坡度(15‰)的灰水管道具有更高的硝化和反硝化基因丰度。进一步分析可知,小管径灰水管道采用高敷设坡度的设计方案可能具有更强的生物脱氮能力。Abstract: To explore the characteristics of bacterial communities in the biofilms of rural gray water small diameter gravity sewer (SDGS) systems, a gray water SDGS equipment was set up which can simulate the variations of gray water flow rate in rural area and slope gradients (5‰, 10‰, 15‰). Sewer biofilms sampled after 60 d operation were analyzed by Illumina HiSeq high-throughput sequencing. Results indicated that Proteobacteria, Actinobacteria and Bacteroidetes were the predominant bacterial phylum and Paenarthrobacte, Ensifer and Spingopyxis were the predominant genus. Slope gradients had great influences on bacterial communities in sewer biofilms. Denitrifying bacteria and nitrite-oxidizing bacteria with certain abundance were identified in gray water SDGS biofilms, which had the function of biological nitrogen removal. The abundance of nitrification and denitrification genes predicted by the method of PICRUSt was higher in gray water SDGS biofilms with higher slope gradient (15‰). The gray water SDGS with high slope gradients could have stronger biological nitrogen removal.
-
表 1 配制灰水组分浓度
Table 1. Composition of synthetic gray water
常量物质 浓度/(mg·L−1) 微量物质 浓度/(μg·L−1) 葡萄糖 80 CaCl2·2H2O 73.50 蛋白胨 80 MgSO4·7H2O 51.25 CH3COONa 54 Na2SiO3·9H2O 30.43 NaHCO3 91 Al2(SO4)3·16H2O 11.78 KCl 57 FeCl3·6H2O 4.83 KNO3 7 ZnSO4·7H2O 0.88 NH4Cl 19 H3BO3 0.58 NaH2PO4·2H2O 15 CuSO4·5H2O 0.39 食用油 30 MnCl2·4H2O 0.27 十二烷基苯磺酸钠 5 KI 0.03 EDTA 20.00 注:pH=7。 表 2 实验灰水水质特征
Table 2. Characteristics of gray water in the experiment
测试结果 pH DO/(mg·L−1) COD/(mg·L−1) ${\rm{NH}}_4^ + $ -N/(mg·L−1)TN/(mg·L−1) TP/(mg·L−1) ${\rm{SO}}_4^{2 - }$ /(mg·L−1)LAS/(mg·L−1) 平均值 7.07 4.26 121.56 4.90 14.33 3.83 18.07 2.69 标准差 0.13 0.57 85.88 0.63 1.22 0.94 7.33 1.60 注:LAS为阴离子表面活性剂。 表 3 灰水管道生物膜功能细菌相对丰度(属水平)
Table 3. Relative abundance of functional bacteria in gray water sewer biofilms at genus level
功能菌 属名 相对丰度/% 坡度5‰ 坡度10‰ 坡度15‰ 含有反硝化
细菌的属Rhodobacter 2.745 2.423 0.986 Pseudomonas 2.121 1.990 3.024 Paracoccus 0.735 0.681 0.273 Aeromonas 0.491 0.594 0.828 Xanthomonas 0.296 0.258 0.139 Acinetobacter 0.262 0.214 0.277 Microbacterium 0.093 0.065 0.058 Vibrio 0.086 0.081 0.130 Bacillus 0.081 0.083 0.082 Rhizobium 0.064 0.065 0.171 Comamonas 0.045 0.044 0.028 Erythrobacter 0.019 0.022 0.050 硝酸细菌 Nitrospira 0.126 0.132 0.118 硫氧化细菌 Acidiphilium 0.059 0.049 0.017 Sphingomonas 0.004 0.006 0.011 Beggiatoa 0.001 0.008 0.029 -
[1] WANG L K, TAY J H, TAY S T L, et al. Environmental Bioengineering [M]. Totowa, NJ: Humana Press, 2010. [2] 郝晓地, 宋虹苇. 生态卫生: 可持续、分散式污水处理新概念[J]. 给水排水, 2005, 31(6): 42-45. doi: 10.3969/j.issn.1002-8471.2005.06.013 [3] National Academies of Sciences, Engineering, Medicine. Using Graywater and Stormwater to Enhance Local Water Supplies: An Assessment of Risks, Costs, and Benefits[M]. Washington, DC: The National Academies Press, 2016. [4] 范彬, 胡明, 顾俊, 等. 不同农村污水收集处理方式的经济性比较[J]. 中国给水排水, 2015, 31(14): 20-25. [5] GIKAS P, RANIERI E, SOUGIOULTZIS D, et al. Alternative collection systems for decentralized wastewater management: An overview and case study of the vacuum collection system in Eretria town, Greece[J]. Water Practice and Technology, 2017, 12(3): 604-618. doi: 10.2166/wpt.2017.050 [6] U. S. Environmental Protection Agency. Decentralized systems technology fact sheet small diameter gravity sewers[R]. Washington, DC: Office of Water, 2000. [7] LITTLE C. A comparison of sewer reticulation system design standards gravity, vacuum and small bore sewers[J]. Water SA, 2007, 30(5): 137-144. [8] JIN P K, WANG B, JIAO D, et al. Characterization of microflora and transformation of organic matters in urban sewer system[J]. Water Research, 2015, 84: 112-119. doi: 10.1016/j.watres.2015.07.008 [9] 金鹏康, 王斌. 城市污水管网对水质的生化改善特性[J]. 环境工程学报, 2016, 10(7): 3401-3408. doi: 10.12030/j.cjee.201502075 [10] HE Q, YIN F X, LI H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: A suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018, 25(16): 1-11. [11] 张冰, 杨海真. 农村混合生活污水排放特征及其处理工艺研究[J]. 四川环境, 2012, 31(4): 65-70. doi: 10.3969/j.issn.1001-3644.2012.04.013 [12] AESOY A, STORFJELL M, MELLGREN L, et al. A comparison of biofilm growth and water quality changes in sewers with anoxic and anaerobic (septic) conditions[J]. Water Science and Technology, 1997, 36(1): 303-310. doi: 10.2166/wst.1997.0068 [13] AI H N, XU J W, HUANG W, et al. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers[J]. Water Science and Technology, 2016, 73(7): 1572-1582. doi: 10.2166/wst.2015.633 [14] LANGILLE M G I, JESSE Z J, GREGORY C, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. doi: 10.1038/nbt.2676 [15] BUSSE H J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(1): 9-37. doi: 10.1099/ijsem.0.000702 [16] CASIDA L E J. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil[J]. International Journal of Systematic Bacteriology, 1982, 32(3): 339-345. doi: 10.1099/00207713-32-3-339 [17] KEUN S B, NA C H, SEONG C P, et al. Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(4): 1297-1303. [18] DONG Q, SHI H C, LIU Y C. Microbial character related sulfur cycle under dynamic environmental factors based on the microbial population analysis in sewerage system[J]. Frontiers in Microbiology, 2017, 8: 1-11. [19] LIU Y C, ZHOU X H, SHI H C. Sulfur cycle by in situ analysis in the sediment biofilm of a sewer system[J]. Journal of Environmental Engineering, 2016, 142(9): C4015011. doi: 10.1061/(ASCE)EE.1943-7870.0000991 [20] JIN P K, SHI X, SUN G X, et al. Co-variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems[J]. Environmental Science and Technology, 2018, 52(3): 1270-1279. doi: 10.1021/acs.est.7b05121 [21] 王薇, 蔡祖聪, 钟文辉, 等. 好氧反硝化菌的研究进展[J]. 应用生态学报, 2007, 18(11): 2618-2625. [22] 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265. doi: 10.3969/j.issn.1000-6923.2015.11.008 [23] BARTON L, TOME I T F. Characteristics and Activities of Sulfate-Reducing Bacteria[M]. Boston, MA: Springer Science Business Media, 1995. [24] MATĚJŮ V, ČIŽINSK S, KREJČ J, et al. Biological water denitrification: A review[J]. Enzyme and Microbial Technology, 1992, 14(3): 170-183. doi: 10.1016/0141-0229(92)90062-S