[1] |
WANG L K, TAY J H, TAY S T L, et al. Environmental Bioengineering [M]. Totowa, NJ: Humana Press, 2010.
|
[2] |
郝晓地, 宋虹苇. 生态卫生: 可持续、分散式污水处理新概念[J]. 给水排水, 2005, 31(6): 42-45. doi: 10.3969/j.issn.1002-8471.2005.06.013
|
[3] |
National Academies of Sciences, Engineering, Medicine. Using Graywater and Stormwater to Enhance Local Water Supplies: An Assessment of Risks, Costs, and Benefits[M]. Washington, DC: The National Academies Press, 2016.
|
[4] |
范彬, 胡明, 顾俊, 等. 不同农村污水收集处理方式的经济性比较[J]. 中国给水排水, 2015, 31(14): 20-25.
|
[5] |
GIKAS P, RANIERI E, SOUGIOULTZIS D, et al. Alternative collection systems for decentralized wastewater management: An overview and case study of the vacuum collection system in Eretria town, Greece[J]. Water Practice and Technology, 2017, 12(3): 604-618. doi: 10.2166/wpt.2017.050
|
[6] |
U. S. Environmental Protection Agency. Decentralized systems technology fact sheet small diameter gravity sewers[R]. Washington, DC: Office of Water, 2000.
|
[7] |
LITTLE C. A comparison of sewer reticulation system design standards gravity, vacuum and small bore sewers[J]. Water SA, 2007, 30(5): 137-144.
|
[8] |
JIN P K, WANG B, JIAO D, et al. Characterization of microflora and transformation of organic matters in urban sewer system[J]. Water Research, 2015, 84: 112-119. doi: 10.1016/j.watres.2015.07.008
|
[9] |
金鹏康, 王斌. 城市污水管网对水质的生化改善特性[J]. 环境工程学报, 2016, 10(7): 3401-3408. doi: 10.12030/j.cjee.201502075
|
[10] |
HE Q, YIN F X, LI H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: A suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018, 25(16): 1-11.
|
[11] |
张冰, 杨海真. 农村混合生活污水排放特征及其处理工艺研究[J]. 四川环境, 2012, 31(4): 65-70. doi: 10.3969/j.issn.1001-3644.2012.04.013
|
[12] |
AESOY A, STORFJELL M, MELLGREN L, et al. A comparison of biofilm growth and water quality changes in sewers with anoxic and anaerobic (septic) conditions[J]. Water Science and Technology, 1997, 36(1): 303-310. doi: 10.2166/wst.1997.0068
|
[13] |
AI H N, XU J W, HUANG W, et al. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers[J]. Water Science and Technology, 2016, 73(7): 1572-1582. doi: 10.2166/wst.2015.633
|
[14] |
LANGILLE M G I, JESSE Z J, GREGORY C, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. doi: 10.1038/nbt.2676
|
[15] |
BUSSE H J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(1): 9-37. doi: 10.1099/ijsem.0.000702
|
[16] |
CASIDA L E J. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil[J]. International Journal of Systematic Bacteriology, 1982, 32(3): 339-345. doi: 10.1099/00207713-32-3-339
|
[17] |
KEUN S B, NA C H, SEONG C P, et al. Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(4): 1297-1303.
|
[18] |
DONG Q, SHI H C, LIU Y C. Microbial character related sulfur cycle under dynamic environmental factors based on the microbial population analysis in sewerage system[J]. Frontiers in Microbiology, 2017, 8: 1-11.
|
[19] |
LIU Y C, ZHOU X H, SHI H C. Sulfur cycle by in situ analysis in the sediment biofilm of a sewer system[J]. Journal of Environmental Engineering, 2016, 142(9): C4015011. doi: 10.1061/(ASCE)EE.1943-7870.0000991
|
[20] |
JIN P K, SHI X, SUN G X, et al. Co-variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems[J]. Environmental Science and Technology, 2018, 52(3): 1270-1279. doi: 10.1021/acs.est.7b05121
|
[21] |
王薇, 蔡祖聪, 钟文辉, 等. 好氧反硝化菌的研究进展[J]. 应用生态学报, 2007, 18(11): 2618-2625.
|
[22] |
曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265. doi: 10.3969/j.issn.1000-6923.2015.11.008
|
[23] |
BARTON L, TOME I T F. Characteristics and Activities of Sulfate-Reducing Bacteria[M]. Boston, MA: Springer Science Business Media, 1995.
|
[24] |
MATĚJŮ V, ČIŽINSK S, KREJČ J, et al. Biological water denitrification: A review[J]. Enzyme and Microbial Technology, 1992, 14(3): 170-183. doi: 10.1016/0141-0229(92)90062-S
|