-
榨菜生产加工过程中会产生大量废水,其水质成分复杂、盐度高、浓度高、难降解,对受纳水体水环境影响极大。高盐度对微生物有抑制作用,因此,利用传统生物法很难对榨菜废水进行高效处理[1]。传统的反渗透法、离子交换法和电渗析法只能去除盐度,对于榨菜废水的有机污染物很难去除,且成本较高。2009年,CAO等[2]提出了微生物脱盐燃料电池这一概念,为盐水淡化提供了新思路。微生物脱盐燃料电池(microbial desalination cell,MDC)系统是在微生物燃料电池(microbial fuel cell,MFC)的基础上联合了电渗析原理改进得到的。它是在阴极室和阳极室之间,用阳离子交换膜和阴离子交换膜分割出来的一个中间脱盐室,构造出的3室MDC。靠近阳极室的是阴离子交换膜,只允许阴离子通过;靠近阴极室的是阳离子交换膜,只允许阳离子通过。电池依靠阳极室中的产电菌,利用有机底物产生电子,电子通过外电路传导到阴极电极上,与电子受体接触,进而产生电流[3]。在产生的电场作用与浓度梯度作用下,中间脱盐室的Na+和Cl−分别通过阳离子交换膜与阴离子交换膜进入阴极室和阳极室,达到脱盐的目的。同时,中间脱盐室榨菜废水中的
${\rm{NH}}_4^ + $ -N也可以在电场作用下,通过阳离子交换膜进入阴极室,达到去除高盐废水${\rm{NH}}_4^ + $ -N的目的。有研究[4]表明,阴极是制约MDC产电功率的其中一个主要因素。空气阴极MDC的实际效果较为理想[5]。阳极有机底物也是影响MDC产电性能与运行效果的主要因素。JACOBSON等[6]指出,乙酸钠作为单一的阳极有机底物,对产电菌的影响效果最佳,阳极液进水乙酸钠浓度为4 g·L−1。在MEHANNA等[7]的研究中,阳极液进水乙酸钠浓度为2 g·L−1。在CAO等[2]的研究中,阳极液进水乙酸钠浓度为1.6 g·L−1。三者均没有对比阳极底物不同浓度对MDC产电与脱盐的影响,对3种情况下的COD去除率也没有对比研究,阳极COD没有得到合理的优化。LUO等[8]利用生活污水作为阳极液,可以有效替代人工配水来运行MDC,且效果较为理想。张慧超[9]研究的MDC处理人工配制高盐废水中,阳极液COD为800 mg·L−1,其产电性能与脱盐速率均较高。已有研究大多以人工配制高盐废水为MDC目标处理废水进行研究,而以实际高盐废水作为中间脱盐室进水却鲜有报道。
本研究以重庆涪陵榨菜厂的高盐高浓度榨菜废水为中间脱盐室进水,阳极液以生活污水为基础,通过投加乙酸钠,分别配制出COD较低、中等、较高3个水平(400、900、1 400 mg·L−1)的溶液,其中,400 mg·L−1 COD可以代表生活污水COD,900 mg·L−1 COD与文献报道较优值接近,1 400 mg·L−1COD则代表较高COD水平,考察较高COD对MDC的影响,阴极采用Pt/C空气阴极形式,同时运行3套间歇式MDC,对比3个浓度水平下的MDC多周期运行产电性能与脱盐差异。同时,运用高通量测序手段,研究阳极生物膜与脱盐室水体中微生物群落,进而解释实际高盐废水中
${\rm{NH}}_4^ + $ -N的去除机理,为进一步处理高盐高浓度榨菜废水提供参考。
阳极COD对榨菜生产废水MDC产电、脱盐的影响及氨氮去除的微生物群落分析
Effect of anode COD on electricity generation and desalination of mustard production wastewater MDC and microbial community analysis under ammonia nitrogen removal
-
摘要: 构建了3室榨菜生产废水微生物脱盐燃料电池系统(microbial desalination cell,MDC),探讨了其阳极COD对榨菜废水MDC产电、脱盐的影响;通过微生物群落分析,探查了脱盐室
${{\rm{NH}}_4^ + }$ -N的去除途径。结果表明:在产电性能方面,MDC阳极COD为900 mg·L−1时较400 mg·L−1与1 400 mg·L−1时更优,在1 000 Ω的外电阻负载下,其输出电压、最大功率密度、库仑效率分别为550 mV、2.91 W·m−3、(15.7±0.5)%;在脱盐方面,阳极COD为400 mg·L−1时,较其他2种情况更优,MDC的脱盐时间、脱盐速率、电子利用效率分别为910.5 h、5.15 mg·h−1、111%。阳极COD不同的MDC脱盐室,其${{\rm{NH}}_4^ + }$ -N的去除途径基本相同。脱盐室部分${{\rm{NH}}_4^ + }$ -N转化为${{\rm{NO}}_3^ - }$ -N后,通过自身的反硝化或以NO3形式迁移至阳极得以去除,剩余的大部分${{\rm{NH}}_4^ +} $ -N以${{\rm{NH}}_4^ + }$ 形式迁移至阴极,在碱性环境下转化为NH3并排出。高通量测序分析结果表明,水解发酵菌属(总丰度为33.21%)为MDC阳极的核心微生物群落。阳极生物膜中的电化学活性菌(总丰度为11.78%)可实现电池的产电功能,反硝化菌属(总丰度为14.61%)的存在证明,脱盐室盐室${{\rm{NO}}_3^ - }$ -N迁移至阳极室后进行了反硝化并得以去除。在脱盐室水体中检测到了氨氧化菌属(总丰度为6.93%)及反硝化菌属(总丰度为15.82%),这也是脱盐室中${{\rm{NO}}_3^ - }$ -N快速产生和随后浓度陡降的原因。Abstract: In this study, three-chamber microbial desalination cell (MDC) of mustard wastewater was constructed. The effects of anode chemical oxygen demand (COD) on electricity generation and desalination of mustard production wastewater MDC were investigated. And${\rm{NH}}_4^ + $ -N removal route in the desalination chamber was analyzed through the microbial community in it. The results show that the electricity generation performance of MDC at anode COD concentration of 900 mg·L−1 was better than at anode COD concentrations of 400 and 1 400 mg·L−1. Under the loading of 1 000 Ω external resistors, the output voltage, power density, and coulombic efficiency of MDC were 550 mV, 2.91 W·m−3 and (15.7±0.5)%, respectively. The desalination performance of MDC at anode COD concentration of 400 mg·L−1 was better than other two concentrations, MDC desalination time, desalination rate, and charge transfer efficiency were 910.5 h, 5.15 mg·h−1 and 111%, respectively. The${\rm{NH}}_4^ + $ -N removal route of the desalination chamber was basically same in MDC with different anode COD concentrations. Part of${\rm{NH}}_4^ + $ -N in the desalination chamber converted to${\rm{NO}}_3^ - $ -N, which was removed by its own denitrification and the migration to the anode as${\rm{NO}}_3^ - $ . Most of the remaining${\rm{NH}}_4^ + $ -N migrated to the cathode as${\rm{NH}}_4^ + $ , it converted to NH3 in an alkaline environment and emitted afterwards. The high-throughput sequencing analysis indicated that the hydrolysis fermentation bacteria (total abundance of 33.21%) were the anode core microbial community of MDC. The electrochemically active bacteria in the anode biofilm (total abundance of 11.78%) could achieve power generation of MDC. The genus of denitrifying (total abundance of 14.61%) was detected in the anode biofilm, which proved that${\rm{NO}}_3^ - $ -N in the desalination chamber could migrate to the anode chamber and the denitrification removal occurred afterwards. The genus of Ammonia (total abundance of 6.93%) and denitrifying (total abundance of 15.82%) were detected in the water of the desalination chamber, which was also the reason for${\rm{NO}}_3^ - $ -N rapid production and its subsequent steep drop in the desalination chamber. -
表 1 厌氧池出水和生活污水水质
Table 1. Characteristics of anaerobic reactor effluent and domestic sewage
水质类型 盐度(以NaCl计) /(g·L−1) 电导率/(mS·cm−1) COD /(mg·L−1) ${\rm{NH}}_4^ + $ -N /(mg·L−1)${\rm{NO}}_3^ - $ /(mg·L−1)${\rm{NO}}_2^ - $ /(mg·L−1)pH 厌氧池出水 18.93±0.02 37.9±0.1 1 995±30 279.21±5.3 3.01±0.06 0.09±0.00 7.33±0.25 生活污水 — — 100±1.21 33.93±0.26 1.17±0.09 0.004±0.00 7.82±0.21 表 2 碳粉层其余处理材料浓度与用量
Table 2. Concentration and dosage of the remaining treatment materials in the toner layer
材料 浓度/(μL·mg −1) 用量/μL 去离子水 0.83 52.29 Nafion黏结剂 6.67 420.21 异丙醇 3.33 209.79 表 3 阳极生物膜及脱盐室水体的微生物多样性
Table 3. Microbial diversity of anode biofilm and water in desalination chamber
组别 多样性指标 丰度指标 覆盖率 Shannon指数 Simpson指数 OTU/个 Ace指数 Chao指数 阳极生物膜 3.68 0.074 2 527 541.77 546.01 0.998 脱盐室水体 3.21 0.098 8 306 331.97 345.14 0.997 -
[1] MCCARY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer-can this be achieved[J]. Environment Science and Technology, 2011, 45(17): 7100-7106. doi: 10.1021/es2014264 [2] CAO X X, HUANG X, LIANG P, et al. A new method for water desalination using microbial desalination cells[J]. Environment Science Technology, 2009, 43(18): 7148-7152. doi: 10.1021/es901950j [3] 李宇斐. 微生物脱盐燃料电池用于盐水淡化的工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [4] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environment Science Technology, 2004, 38(18): 4900-4904. doi: 10.1021/es049422p [5] ZHAO F, HARNISCH F, SCHRODER U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environment Science Technology, 2006, 40(17): 5193-5199. doi: 10.1021/es060332p [6] JACOBSON K S, DREW D M, HE Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode[J]. Bioresource Technology, 2011, 102(1): 376-380. doi: 10.1016/j.biortech.2010.06.030 [7] MEHANNA M, KIELY P D, CALL D F, et al. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production[J]. Environment Science Technology, 2010, 44(24): 9578-9583. doi: 10.1021/es1025646 [8] LUO H P, JENKINS P E, REN Z Y. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells[J]. Environment Science Technology, 2011, 45(1): 340-344. doi: 10.1021/es1022202 [9] 张慧超. 生物阴极微生物脱盐燃料电池驱动电容法深度除盐性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [10] 温青, 刘智敏, 陈野, 等. 空气阴极生物燃料电池电化学性能[J]. 物理化学学报, 2008, 24(6): 1063-1067. doi: 10.3866/PKU.WHXB20080626 [11] GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18(4): 327-334. doi: 10.1016/S0956-5663(02)00110-0 [12] MEHANNA M, SAITO T, YAN J L, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis[J]. Energy & Environmental Science, 2010, 3(8): 1114-1120. [13] ZHANG G D, WANG K, ZHAO Q L, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells[J]. Bioresource Technology, 2012, 118: 249-256. doi: 10.1016/j.biortech.2012.05.015 [14] TREMOULI A, INTZES A, INTZES P, et al. Effect of periodic complete anolyte replacement on the long term performance of a four air cathodes single chamber microbial fuel cell[J]. Journal of Applied Electrochemistry, 2015, 45(7): 755-763. doi: 10.1007/s10800-015-0842-z [15] GHADGE A N, JADHAV D A, PRADHAN H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015, 182: 225-231. doi: 10.1016/j.biortech.2015.02.004 [16] 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4): 1401-1407. doi: 10.3969/j.issn.1000-6923.2017.04.026 [17] 曲有朋. 连续流微生物脱盐燃料电池的构建及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [18] LUO H P, XU P, REN Z Y. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater[J]. Bioresource Technology, 2012, 120: 187-193. doi: 10.1016/j.biortech.2012.06.054 [19] 朱峰. 下流式微生物燃料电池及微生物脱氮电池的研究[D]. 苏州: 苏州大学, 2011. [20] LORENZO M D, SCOTT K, CURTIS T P, et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal, 2010, 156: 40-48. doi: 10.1016/j.cej.2009.09.031 [21] 周昱宏. 微生物燃料电池处理含氮废水的研究[D]. 杭州: 浙江大学, 2018. [22] 丁阿强. 生物电极脱氮及其机理研究[D]. 杭州: 浙江大学, 2018. [23] 王佳, 荣宏伟, 张朝升, 等. 不同电极材料对阴极硝化耦合阳极反硝化微生物燃料电池性能的影响[J]. 环境工程学报, 2018, 12(2): 663-669. doi: 10.12030/j.cjee.201708036 [24] 成少安, 黄志鹏, 于利亮, 等. 微生物燃料电池处理高盐废水的研究进展[J]. 化工学报, 2018, 69(2): 546-554. [25] 孙敏. 微生物燃料电池的功能拓展和机理解析[D]. 合肥: 中国科学技术大学, 2009. [26] SOTRES A, TEY L, BONMATI A, et al. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry[J]. Bioelectrochemistry, 2016, 111: 70-82. doi: 10.1016/j.bioelechem.2016.04.007 [27] LEWIS A J, BOROLE A P. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell[J]. Biochemical Engineering Journal, 2016, 116: 95-104. doi: 10.1016/j.bej.2016.06.008 [28] MIAO Y, WANG Z, LIAO R, et al. Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater[J]. Chemical Engineering Journal, 2017, 330: 757-763. doi: 10.1016/j.cej.2017.08.011 [29] KIRKEGAARD R H, DUEHOLM M S, MCILROY S J, et al. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters[J]. ISME Journal, 2016, 10(10): 2352-2364. doi: 10.1038/ismej.2016.43 [30] ZHANG L F, FU G K, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. doi: 10.1016/j.bioelechem.2018.11.002 [31] YANG N, ZHANG G Q, LI D P, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2018, 356: 506-515. [32] DONG J J, ZHANG Z M, YU Z D, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174 [33] TANG C C, TIAN Y, HE Z W, et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater[J]. Bioresource Technology, 2018, 265: 422-431. doi: 10.1016/j.biortech.2018.06.033