[1] |
MCCARY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer-can this be achieved[J]. Environment Science and Technology, 2011, 45(17): 7100-7106. doi: 10.1021/es2014264
|
[2] |
CAO X X, HUANG X, LIANG P, et al. A new method for water desalination using microbial desalination cells[J]. Environment Science Technology, 2009, 43(18): 7148-7152. doi: 10.1021/es901950j
|
[3] |
李宇斐. 微生物脱盐燃料电池用于盐水淡化的工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
[4] |
OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environment Science Technology, 2004, 38(18): 4900-4904. doi: 10.1021/es049422p
|
[5] |
ZHAO F, HARNISCH F, SCHRODER U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environment Science Technology, 2006, 40(17): 5193-5199. doi: 10.1021/es060332p
|
[6] |
JACOBSON K S, DREW D M, HE Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode[J]. Bioresource Technology, 2011, 102(1): 376-380. doi: 10.1016/j.biortech.2010.06.030
|
[7] |
MEHANNA M, KIELY P D, CALL D F, et al. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production[J]. Environment Science Technology, 2010, 44(24): 9578-9583. doi: 10.1021/es1025646
|
[8] |
LUO H P, JENKINS P E, REN Z Y. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells[J]. Environment Science Technology, 2011, 45(1): 340-344. doi: 10.1021/es1022202
|
[9] |
张慧超. 生物阴极微生物脱盐燃料电池驱动电容法深度除盐性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[10] |
温青, 刘智敏, 陈野, 等. 空气阴极生物燃料电池电化学性能[J]. 物理化学学报, 2008, 24(6): 1063-1067. doi: 10.3866/PKU.WHXB20080626
|
[11] |
GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18(4): 327-334. doi: 10.1016/S0956-5663(02)00110-0
|
[12] |
MEHANNA M, SAITO T, YAN J L, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis[J]. Energy & Environmental Science, 2010, 3(8): 1114-1120.
|
[13] |
ZHANG G D, WANG K, ZHAO Q L, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells[J]. Bioresource Technology, 2012, 118: 249-256. doi: 10.1016/j.biortech.2012.05.015
|
[14] |
TREMOULI A, INTZES A, INTZES P, et al. Effect of periodic complete anolyte replacement on the long term performance of a four air cathodes single chamber microbial fuel cell[J]. Journal of Applied Electrochemistry, 2015, 45(7): 755-763. doi: 10.1007/s10800-015-0842-z
|
[15] |
GHADGE A N, JADHAV D A, PRADHAN H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015, 182: 225-231. doi: 10.1016/j.biortech.2015.02.004
|
[16] |
付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4): 1401-1407. doi: 10.3969/j.issn.1000-6923.2017.04.026
|
[17] |
曲有朋. 连续流微生物脱盐燃料电池的构建及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[18] |
LUO H P, XU P, REN Z Y. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater[J]. Bioresource Technology, 2012, 120: 187-193. doi: 10.1016/j.biortech.2012.06.054
|
[19] |
朱峰. 下流式微生物燃料电池及微生物脱氮电池的研究[D]. 苏州: 苏州大学, 2011.
|
[20] |
LORENZO M D, SCOTT K, CURTIS T P, et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal, 2010, 156: 40-48. doi: 10.1016/j.cej.2009.09.031
|
[21] |
周昱宏. 微生物燃料电池处理含氮废水的研究[D]. 杭州: 浙江大学, 2018.
|
[22] |
丁阿强. 生物电极脱氮及其机理研究[D]. 杭州: 浙江大学, 2018.
|
[23] |
王佳, 荣宏伟, 张朝升, 等. 不同电极材料对阴极硝化耦合阳极反硝化微生物燃料电池性能的影响[J]. 环境工程学报, 2018, 12(2): 663-669. doi: 10.12030/j.cjee.201708036
|
[24] |
成少安, 黄志鹏, 于利亮, 等. 微生物燃料电池处理高盐废水的研究进展[J]. 化工学报, 2018, 69(2): 546-554.
|
[25] |
孙敏. 微生物燃料电池的功能拓展和机理解析[D]. 合肥: 中国科学技术大学, 2009.
|
[26] |
SOTRES A, TEY L, BONMATI A, et al. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry[J]. Bioelectrochemistry, 2016, 111: 70-82. doi: 10.1016/j.bioelechem.2016.04.007
|
[27] |
LEWIS A J, BOROLE A P. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell[J]. Biochemical Engineering Journal, 2016, 116: 95-104. doi: 10.1016/j.bej.2016.06.008
|
[28] |
MIAO Y, WANG Z, LIAO R, et al. Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater[J]. Chemical Engineering Journal, 2017, 330: 757-763. doi: 10.1016/j.cej.2017.08.011
|
[29] |
KIRKEGAARD R H, DUEHOLM M S, MCILROY S J, et al. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters[J]. ISME Journal, 2016, 10(10): 2352-2364. doi: 10.1038/ismej.2016.43
|
[30] |
ZHANG L F, FU G K, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. doi: 10.1016/j.bioelechem.2018.11.002
|
[31] |
YANG N, ZHANG G Q, LI D P, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2018, 356: 506-515.
|
[32] |
DONG J J, ZHANG Z M, YU Z D, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174
|
[33] |
TANG C C, TIAN Y, HE Z W, et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater[J]. Bioresource Technology, 2018, 265: 422-431. doi: 10.1016/j.biortech.2018.06.033
|