-
燃煤电厂已全面实施烟气的超低排放,且取得了显著的环保效益[1]。钢铁行业执行2012年环境保护部颁布的《钢铁烧结、球团工业大气污染物排放标准》(GB 28662-2012)。2013年2月27日,环境保护部印发《关于执行大气污染物特别排放限值的公告》,规定烧结机球团焙烧设备、烧结机机尾带式焙烧机机尾其他生产设备的烟尘特别排放限值分别为40、20 mg·m−3。2017年6月,环境保护部发布的GB 28662-2012修改单(征求意见稿)中提出,根据重点地区环境空气质量管理需求,应进一步深化钢铁烧结、球团工业烟气治理,加严特别排放限值要求[2],将烟尘特别排放限值再提升至20 mg·m−3。目前,部分地区的工业锅炉、钢铁、水泥等行业也陆续效仿燃煤电厂,实施烟气超低排放政策,即规定烟尘限值为10 mg·m−3。目前,烧结机头除尘部分均安装电除尘器,机尾除尘部分也基本安装除尘设备,早期大多数以电除尘器为主,现逐步改为袋式除尘器[3-6]。
随着对电除尘性能要求的提高,气流分布对电除尘器的重要程度越来越显著,尤其是在有限增容的前提下,充分利用气流分布技术进行提效,已成为实现烧结烟气超低排放改造的关键之一。宋孝红等[7]用计算流体力学商用软件CFX模拟了某190 m2烧结机“电改袋”流场分布;孟思明[8]研究了烧结粉尘特性,并采用CFD方法对实验用电除尘器的流场特性进行了计算分析,设计了合理的气流分布方案;王锦[9]针对某265 m2烧结机烟气除尘器,利用ICEM-CFD软件进行了网格划分,采用FLUENT进行了模拟计算,研究了“电改袋”流场分布特性;常玉锋[10]采用数值模拟方法研究了横向双极静电除尘器极配参数对伏安特性和流场分布的影响规律,并成功应用于烧结机头烟尘净化系统的提效改造,但数值模拟结果未进行现场实测验证;王宏波[11]采用FLUENT软件,对上海某烧结机头电除尘器流场进行了模拟分析,为工程设计提供参考,但未涉及颗粒相的分配情况及电场计算。本研究基于商业CFD软件,对某600 m2烧结机头电除尘器流场及烟尘分配情况进行模拟计算,基于电场及颗粒相分析模拟计算了电除尘器的除尘效率,为电除尘器的设计提供参考,并在后续的性能测试中得到了有效验证。
烧结机头电除尘器的数值模拟及现场实测验证
Numerical simulation and field measurement verification of sintering head electrostatic precipitator
-
摘要: 为提高某600 m2烧结机头电除尘器的实际工程应用效果,使用商业CFD软件进行数值模拟,分别采用k-ε模型、电磁流体模型(MHD)和离散相模型(DPM)模拟流场、电场和颗粒运动轨迹。结果表明:经气流分布优化后,计算得到电除尘器进口烟气量分配偏差为±1.5%、颗粒相质量流量偏差为±0.7%,电除尘器本体两侧阻力分别为127.1 Pa和123.7 Pa,电场截面气流分布均匀性相对均方根差分别为0.129和0.133,均优于标准JB/T 7671-2017要求;得到电场内电势分布及颗粒运动规律,电除尘效率与供电电压、颗粒粒径具有相关性。经现场实测验证,各参数的实测值与模拟值一致性较好,实测电除尘器出口烟尘浓度为25.8 mg·m−3,除尘效率达99.20%,优于设计值;烟尘颗粒在0.03~10 μm的分级除尘效率为80.35%~98.69%。0.1~1 μm的颗粒段存在穿透窗口,其分级除尘效率仅为80.35%~91.81%。本研究结果可为烧结烟气的烟尘超低排放提供参考。Abstract: In order to guide the practical engineering design of a 600 m2 sintering head electrostatic precipitator (ESP), numerical simulation was performed by a commercial CFD software. The flow field, electric field and particle trajectory were simulated by using the k-ε model, the electromagnetic fluid model (MHD) and the discrete phase model (DPM), respectively. The results showed that after air distribution optimization, the deviations of smoke gas distribution and particle mass flow rate of ESP inlet were ±1.5% and ±0.7%, respectively. The ESP resistances on both sides were 127.1 Pa and 123.7 Pa, respectively, and the root mean square deviations of electric field section airflow distribution uniformity were 0.129 and 0.133, respectively, which were superior to the standard JB/T 7671-2017 requirements. The electric potential distribution and particle movement law in the electric field were obtained, and the dust removal efficiency was positively correlated with the power supply voltage and particle size. Through verification by field measurement, the measured values were in good agreement with the simulated ones, and the measured value of dust concentration in ESP outlet was 25.8 mg·m−3, the dust removal efficiency reached 99.20%, which were better than the designed values. The dust removal efficiencies of dust particles within the range of 0.03~10 μm were 80.35%~98.69%, of which the particles within the range of 0.1~ 1 μm had penetration window, and their dust removal efficiency were only 80.35%~91.81%. This study can provide reference for the ultra-low emission of sintering smoke.
-
表 1 控制方程
Table 1. Governing equation
输运方程 变量 $\varphi $ 扩散系数Γ 源项S 连续方程 1 0 0 动量方程 ui μ $ - \nabla p + \nabla \overline{\overline \tau } $ 湍动能方程 k $\;\mu + \dfrac{\mu }{{{\sigma _{\rm{k}}}}}$ ${G_{\rm{k}}} + {G_{\rm{b}}} - \rho \varepsilon - {Y_{\rm{m}}}$ 耗散率方程 ε $\;\mu + \dfrac{\mu }{{{\sigma _{\rm{k}}}}}$ $\begin{aligned}& \qquad \rho {C_1}S\varepsilon - \rho {C_2}{\varepsilon ^2}/ \\ & \left( {k + \sqrt {v\varepsilon } } \right) + {C_{1\varepsilon }}{C_{2\varepsilon }}{C_{\rm{b}}}\varepsilon /k \end{aligned}$ 电磁感应方程 E $\dfrac{1}{{\sigma {\mu _{\rm{cft}}}}}$ $\sum\limits_{i = x,y,z} {\left( {{E_i}\dfrac{{\partial u}}{{\partial {x_i}}} + {U_i}\dfrac{{\partial {E_{\sigma i}}}}{{\partial {x_i}}}} \right)} $ 表 2 边界条件
Table 2. Boundary conditions
边界 边界条件 参数或特性 模型进口 速度入口 11 m·s−1 模型进口 颗粒相浓度 3 g·m−3 多孔板 多孔介质模型 经验参数 壁面 壁面(Wall) 弹射碰撞 模型出口 自由出口 — -
[1] 郦建国, 朱法华, 孙雪丽. 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51(6): 2-10. [2] 北极星大气网[EB/OL].[2019-05-06]. http://huanbao.bjx.com.cn/news/20170615/831422.shtml. [3] 刘再新, 陈添乐. 烧结环境除尘超低排放技术研究及生产应用[J]. 烧结球团, 2016, 41(3): 57-61. [4] 李海英, 王锦, 郑雅欣. 烧结过程细微颗粒物排放特征与控制方法[J]. 环境工程, 2018, 36(8): 102-106. [5] 范晓慧, 甘敏, 季志云, 等. 烧结烟气超细颗粒物排放规律及其物化特性[J]. 烧结球团, 2016, 41(3): 42-45. [6] 郄俊懋, 张春霞, 王海风, 等. 烧结烟气典型污染物排放形势及减排技术分析[J]. 烧结球团, 2016, 41(6): 59-64. [7] 宋孝红, 陈旺生, 汤静芳. 烧结机尾" 电改袋”除尘器数值模拟[J]. 工业安全与环保, 2016, 42(1): 14-17. doi: 10.3969/j.issn.1001-425X.2016.01.005 [8] 孟思明. 烧结粉尘特性与放电研究及基于此的电除尘平台开发[D]. 武汉: 华中科技大学, 2013. [9] 王锦. 烧结烟气粉尘特性研究与除尘系统优化[D]. 唐山: 华北理工大学, 2017. [10] 常玉锋. 横向双极静电除尘复合增效机理与应用技术研究[D]. 武汉: 武汉科技大学, 2017. [11] 王宏波. 基于稳定可靠性的烧结机头电除尘系统的设计与研究[D]. 西安: 西安建筑科技大学, 2018. [12] GUO B Y, HOU Q F, YU A B, et al. Numerical modelling of the gas flow through perforated plates[J]. Chemical Engineering Research and Design, 2013, 91(3): 403-408. doi: 10.1016/j.cherd.2012.10.004 [13] SWAMINATHAN M R, MAHALAKSHMI N V. Numerical modelling of flow through perforated plates applied to electrostatic precipitator[J]. Journal of Applied Sciences, 2010, 10(20): 2426-2432. doi: 10.3923/jas.2010.2426.2432 [14] 刘含笑, 刘猛, 焦磊, 等. 某1 000 MW 机组电除尘器气固两相流数值模拟[J]. 环境工程学报, 2018, 12(7): 2029-2038. doi: 10.12030/j.cjee.201711169 [15] 刘代飞, 曹海鹏, 史先菊. 铁矿粉烧结过程建模与仿真研究现状[J]. 钢铁研究学报, 2018, 30(8): 585-597. [16] POTEIRRO J, MARTIN R, GRANADA E, et al. Three-dimensional model of electrostaticfor the estimation of their particle collection efficiency[J]. Fuel Processing Technology, 2016, 143: 86-99. doi: 10.1016/j.fuproc.2015.11.010 [17] CHUN Y, CHANG J S, BEREZIN A, et al. Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 119-124. doi: 10.1109/TDEI.2007.302879 [18] 龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 63(11): 3393-3410. doi: 10.3969/j.issn.0438-1157.2012.11.003 [19] 赵毅, 原永涛. 影响飞灰比电阻因素的探讨[J]. 电力环境保护, 1996, 12(4): 1-6. [20] BICKELHAUPT R E, SPARKS L E. Predicting fly ash resistivity: An evaluation[J]. Environment International, 1981, 6(1): 211-218. [21] 刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425. [22] 莫华, 朱法华, 王圣. 火电行业大气污染物排放对PM2.5的贡献及减排对策[J]. 中国电力, 2013, 46(8): 1-7. doi: 10.3969/j.issn.1004-9649.2013.08.001 [23] 靳星. 静电除尘器内细颗粒物脱除特性的技术基础研究[D]. 北京: 清华大学, 2013. [24] 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223.