添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析

刘华光, 荣超, 张金松, 周星煜. 添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析[J]. 环境工程学报, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
引用本文: 刘华光, 荣超, 张金松, 周星煜. 添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析[J]. 环境工程学报, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
LIU Huaguang, RONG Chao, ZHANG Jinsong, ZHOU Xingyu. Denitrification efficiency and microbiological analysis of sludge with addition of the pretreated landfill leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
Citation: LIU Huaguang, RONG Chao, ZHANG Jinsong, ZHOU Xingyu. Denitrification efficiency and microbiological analysis of sludge with addition of the pretreated landfill leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078

添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析

    作者简介: 刘华光(1993—),男,硕士研究生。研究方向:污水生物脱氮新技术。E-mail:1017012145@qq.com
    通讯作者: 周星煜(1988—),男,博士,工程师。研究方向:污水生物处理技术。E-mail:zhouxingyu2017@163.com
  • 基金项目:
    中国博士后科学基金资助项目(2019M653086);深圳市水务集团科研项目(20180004)
  • 中图分类号: X703.1

Denitrification efficiency and microbiological analysis of sludge with addition of the pretreated landfill leachate

    Corresponding author: ZHOU Xingyu, zhouxingyu2017@163.com
  • 摘要: 以探究前处理垃圾渗滤液作为去除高浓度硝态氮外加碳源的可行性为目的,建立SBR系统R0、R1(分别以无水乙酸钠、前处理垃圾渗滤液+无水乙酸钠作为碳源),采用模拟高浓度硝态氮废水培养获得快速高效反硝化活性污泥,考察了其脱氮效能并进行了分子生物学分析。结果表明:在PLL添加体积分数为10%时,R1系统在2.5 h内可将硝态氮几乎完全去除,反硝化速率高达58.05 mg·(g·h)−1,是R0系统的1.79倍;16S rDNA扩增子测序结果显示,R0、R1反应器内微生物种群类别较为相似,丰度位于前3位的优势反硝化菌分别为假单胞菌属(Pseudomonas)、陶厄氏菌属(Thauera)和Pannonibacter,但相对丰度存在差异;经qPCR测定,实验组R1中反硝化基因narG、nirK、nirS和norB的相对表达量显著高于对照组R0。前处理垃圾渗滤液作为外加碳源可以提高污泥反硝化活性。
  • 近年来,随着经济建设的高速发展,城镇人口急剧增加,污水排放量和污染负荷不断增大,从而导致污水处理厂出水排放的受纳水体水质不断恶化[1-3]。2015年4月,国务院印发的《水污染行动防治计划》中明确要求,敏感区域城镇污水处理设施应全面达到一级A排放标准[4]。因此,提标改造已成为污水处理厂满足愈发严格的出水排放标准的必然选择之一[5]。然而,在实际污水处理厂提标改造过程中,由于对运行参数变化导致的运行效率改变机制认识不清,盲目选择微生物种群结构作为响应指标,导致在提标改造关键参数及工艺的选择上也存在一定的盲目性[6-7]。因此,明确运行参数变化对运行效率产生影响的根本原因,对目前污水处理厂提标改造具有重要的理论意义。

    从污染物降解途径来看,限速酶是物质转化最根本的原因之一。如在氮素转化过程中,氨单加氧酶(AMO)和羟胺氧化还原酶(HAO)是硝化反应的限速酶[8],硝酸盐原酶(NR)和亚硝酸盐还原酶(NIR)是反硝化反应的限速酶[9-11]。一直以来,关于生物脱氮过程中关键酶的研究主要集中在酶的纯化和反应机理上[12-14],近年来,对于酶活性在污水处理过程中的作用才逐步展开。LI等[15]初步分析了与TN去除相关的关键酶种类;CALDERON等[16]阐述了酶活性水平与运行参数变化之间的关系;PAN等[17]探讨了污水处理系统脱氮过程中NR和NIR的特性。然而,这些研究主要集中在实验室小试规模。事实上,实际污水处理厂运行过程比实验室小试装置更加复杂。因此,有必要对实际污水处理厂关键酶活性与污染物去除率之间的关系进行深入研究。

    氧化沟是城市污水处理的3大典型工艺之一[18],在中国,从20世纪80年代以来,氧化沟工艺一直被广泛采用[19]。本研究以Orbal氧化沟为研究对象,分析2种运行模式下活性污泥中微生物种群结构、功能微生物含量、关键酶活性及污染物去除效率,并对其相互关系进行了探讨,目的是揭示影响实际污水处理厂污染物去除率的根本原因,以期为实际污水处理厂提标改造提供参考。

    PCR产物回收纯化试剂盒、实时荧光定量PCR反应试剂盒;磷酸钾(K3PO4)、硫酸铵((NH4)2SO4)、细胞色素C(C42H52FeN8O6S2)、醋酸钠(CH3COONa)、羟胺(NH2OH)、甲基紫(C24H28N3)、硝酸钠(NaNO3)、双对氯苯基三氯乙烷((ClC6H4)2CH(CCl3))均为分析纯。

    核酸自动提取仪(Tanbead,北京九宇金泰生物技术有限公司);聚丙烯酰胺凝胶电泳仪(Bio-Rad,伯乐生命医学产品(上海)有限公司);凝胶成像系统(Bio-Rad,伯乐生命医学产品(上海)有限公司);测序仪(ABI 3730XL,爱普拜斯应用生物系统贸易(上海)有限公司);实时荧光定量PCR仪(SteponePlus,爱普拜斯应用生物系统贸易(上海)有限公司);冷冻离心机(Biofuge Stratos,赛默飞世尔科技(中国)有限公司);溶氧仪(CellOx325,德国WTW中国技术服务中心);pH计(SenTix 41-3,德国WTW中国技术服务中心);温度计(WTW-Multi 340i,德国WTW中国技术服务中心);紫外可见分光光度计(UV-1700,岛津企业管理(中国)有限公司)。

    本实验在河南省某市的一个实际污水处理厂进行,该污水厂主体采用Orbal氧化沟工艺,污水处理量为4×104 m3·d−1,水力停留时间为10 h,污泥龄为12 d。实验分别在2种模式下进行,每种模式的运行周期为1年,进水水质如表1所示。2种运行模式的主要区别在于沟道内转刷开启数量不同,模式I的外、中、内沟道转刷开启数量分别为6、4、4个;模式Ⅱ的沟道转刷开启数量分别为4、4、4个。2种模式下的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷均相近,模式I的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为3 015 mg·L−1、0.13 kg·(kg·d)−1、0.35 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1;模式Ⅱ的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为2 965 mg·L−1、0.13 kg·(kg·d)−1、0.34 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1。每周监测不同模式下进出水水质及沟道内溶解氧变化,测试位置如图1所示(包括转刷后1 m和下一个转刷前1 m)。同时,在每年6月和12月,分别采集沟道内活性污泥样品,用于微生物种群、功能微生物含量及关键酶活性分析。

    表 1  Orbal氧化沟的进水水质
    Table 1.  Influent quality of Orbal oxidation ditch
    模式 COD/(mg·L−1) NH+4-N/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) SS/(mg·L−1) pH
    I 492~734 35.25~48.52 42.56~61.25 2.25~4.15 100~325 6.80~7.20
    II 490~684 36.75~47.56 45.75~60.25 2.65~4.75 120~280 6.70~7.20
     | Show Table
    DownLoad: CSV
    图 1  采集及测试位点示意图
    Figure 1.  Schematic diagram of sites for sampling and testing in Orbal oxidation ditch

    分别采用PCR-DGGE技术、实时荧光定量PCR技术定性、定量分析不同运行模式下活性污泥微生物种群结构及功能微生物含量[20-23];采用分光光度法测定不同运行模式下关键酶活性,一个单位的酶活性(U)定义为:1 g活性污泥中,1 h转化1 mg催化底物所需酶的量[24-26];采用文献中的方法[27]测定不同运行模式下污水厂的进出水水质[27]

    在2种运行模式下,该厂进出水中COD、NH+4-N和TN的监测结果见图2。从图2可以看出,在模式I和模式Ⅱ下,COD的平均去除率分别为(94.28±2.19)%和(91.79±2.77)%;NH+4-N的平均去除率分别为(72.80±7.07)%和(69.36±8.45)%;TN的平均去除率分别为(25.50±6.83)%和(44.67±10.96)%。同时,图2中结果表明,除冬季外,其余季节在模式Ⅱ运行条件下,COD、NH+4-N和TN的去除率均明显高于模式I。在4—10月,模式I和模式Ⅱ的COD的平均去除率分别为(96.08±0.87)%和(94.17±0.73)%;NH+4-N的平均去除率分别为(81.38±3.47)%和(80.59±1.39)%,TN的平均去除率分别为(31.77±5.41)%和(59.81±5.33)%。

    图 2  2种模式下污水处理厂COD、NH+4-N和TN的去除率
    Figure 2.  Removal efficiencies of COD, NH+4-N and TN under two modes

    在2种运行模式下,分别对Orbal氧化沟3个沟道不同位置处DO浓度进行测定,结果见图3。可以看出,DO浓度在转刷前和转刷后有明显不同,特别是在外侧沟道。模式I条件下,转刷后1 m处,外渠道的DO浓度为(2.28±0.3) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.80±0.1) mg·L−1。在模式Ⅱ条件下,转刷后1 m处外渠道的DO浓度为(2.03±0.4) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.16±0.1) mg·L−1

    图 3  2种模式下不同沟道转刷前后溶解氧浓度变化
    Figure 3.  Variation of DO concentration before and after RB in different channels under two modes

    在2种运行模式下,DGGE图谱见图4。可以看出,各沟道内的微生物种群结构基本类似(图4(a))。夏季时,模式I外、中、内沟道香农指数分别为3.76、3.79和3.83,模式Ⅱ外、中、内沟道香农指数分别为3.81、3.97和3.97。冬季时,模式I外、中、内沟道香农指数分别为3.01、3.11和3.15,模式Ⅱ外、中、内沟道香农指数分别为3.05、3.02和3.11。并且,在2种模式下各个沟道中均有主条带W4~W19存在。比对结果显示,所有测得序列97%~100%程度上均与先前确定的16S rRNA基因序列具有同源性,分别隶属于拟杆菌门、变形杆菌门、绿弯菌门和厚壁菌门[28-30](图4(b))。

    图 4  不同沟道活性污泥中细菌种群
    Figure 4.  Bacterial population of activated sludge in different channels

    功能微生物氨氧化菌AOB和硝化细菌NOB定量检测结果见图5。可以看出,无论夏季还是冬季,总细菌、AOB和NOB的含量在模式I和模式Ⅱ下均呈现相似趋势。夏季时,在模式I下,Orbal氧化沟外、中、内沟道中总细菌含量分别为6.70×1010、5.80×1010、5.96×1010 cells·g−1(以干污泥含量计),AOB含量分别为8.98×105、1.02×106、2.52×106 cells·g−1(以干污泥含量计),NOB含量分别为4.89×102、8.88×102、1.02×103 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.84×1010、6.19×1010、5.88×1010 cells·g−1(以干污泥含量计),AOB含量分别为6.25×105、9.88×105、1.80×106 cells·g−1(以干污泥含量计),NOB含量分别为3.96×102、7.69×102、1.66×103 cells·g−1(以干污泥含量计)。冬季时,Orbal氧化沟3个沟道内总细菌、AOB、NOB含量均略低于夏季。在模式I下,外、中、内沟道中总细菌含量分别为5.58×1010、5.21×1010、5.07×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.25×105、8.85×105、9.26×105 cells·g−1(以干污泥含量计),NOB含量分别为3.10×102、3.23×102、4.15×102 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.26×1010、5.61×1010、5.12×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.23×105、5.26×105、7.68×105 cells·g−1(以干污泥含量计),NOB含量分别为2.26×102、4.21×102、8.52×102 cells·g−1(以干污泥含量计)。从AOB和NOB在总细菌中所占的相对比例来看,模式I和模式Ⅱ条件下也呈现相似结果。在模式I下,AOB和NOB的比例分别是7.62×10−6~4.23×10−5和8.19×10−9~1.71×10−8;在模式Ⅱ下,AOB和NOB的比例分别是9.38×10−6~3.06×10−5和7.50×10−9~2.82×10−8

    图 5  2种模式下不同沟道内总细菌、AOB和NOB的含量
    Figure 5.  Quantity of total bacteria, AOB and NOB in different channels under two modes

    理论上,活性污泥中的微生物种群会随着污水处理运行参数的变化而发生变化。因此,微生物种群结构变化常用来解释运行参数调节后污水处理效果发生变化这一现象[31]。本实验是在一个实际污水处理厂展开,水质监测结果发现,当外沟道转刷开启数量减少后,污水处理厂TN去除效率明显提升。然而,2种运行模式下微生物种群结构和功能微生物含量却呈现高度相似现象。这与HASHIMOTO等[32]提出的活性污泥中细菌群落结构在实际污水处理系统中是相对稳定的这一结论是相符的。当然,本实验在同一污水处理厂展开,进水水质的稳定也是2种运行模式下细菌种群结构未发生明显改变的重要原因之一,而这一结论也与ZHOU等[33]在实际污水处理厂的研究结果相符。因此,在实际污水处理厂中,仅选取微生物种群来解释运行参数变化引起运行效率提升的原因是远远不够的。

    在夏季和冬季,分别采集2种运行模式下3个沟道内活性污泥样品,进行关键酶HAO和NR的活性分析。结果显示,在同一运行模式下,与中、内沟道相比,HAO活性在外沟道中最低。相反,NR活性在外沟道中最高。并且,HAO和NR的酶活性在夏季都高于冬季。外沟道中,在模式Ⅱ条件下NR活性明显高于模式Ⅰ。在模式Ⅰ下,夏季和冬季的NR活性(以羟胺计)分别为1.58 mg·(g·h)−1和0.80 mg·(g·h)−1;而模式Ⅱ下,夏季和冬季的NR活性分别为2.27 mg·(g·h)−1和1.07 mg·(g·h)−1。内沟道中,模式I和模式Ⅱ条件下的HAO活性并无明显区别。在模式I下,夏季和冬季的HAO活性(以羟胺计)分别为2.17 mg·(g·h)−1和1.56 mg·(g·h)−1;而在模式Ⅱ下,夏季和冬季的HAO活性分别为2.05 mg·(g·h)−1和1.42 mg·(g·h)−1。分析结果表明,外侧沟道转刷开启数量的减少,直接对其中关键酶NR的活性产生了影响。在模式Ⅱ下,冬季和夏季外侧沟道内NR活性分别比模式I下提高了25%和30%。与此同时,该水厂出水中TN的去除率也由模式I的(25.50±6.83)%提高到了模式Ⅱ的(44.67±10.96)%。综合分析关键限速酶HAO、NR与TN、NH+4-N去除的关系,结果表明,HAO和NR活性与NH+4-N和TN的去除均呈正相关关系,斯皮尔曼相关系数r分别为0.99(P=0.01)和0.88(P=0.12)(图6)。也就是说,改变污水厂运行参数,生物处理单位中关键酶活性随之发生变化,进而改变污染物的去除率。进一步深入分析发现,减少Orbal氧化沟外侧沟道转刷开启数量,其沟道中缺氧或厌氧区段明显延长。供氧量的减少直接改变了外侧沟道局部的微环境条件。而这种微环境条件的改变,在不影响其微生物种群结构的前提下,直接提升了沟道内关键酶活性,进而提升了污水出水水质。这与赵群英等[34]关于DO含量变化对污水出水水质具有明显影响的研究结论是一致的。也就是说,在实际污水处理厂中,改变运行参数后,相对于微生物种群结构和功能微生物含量而言,关键酶活性的响应更为快速灵敏。然而,本研究对关键酶活性的分析仅仅是酶粗提取物的分析,并且仅在一家污水处理厂进行。如要将该研究结果用于解析实际污水处理厂运行参数变化对处理效率影响的机制时,需要进行更为精准且全面的研究。例如,结合更多实际污水处理厂的研究,综合分析多种运行参数变化后其关键酶的响应过程;同时,设计小型批量研究实验,对提取的关键酶进行纯化,进而分析不同运行参数条件下关键酶的响应关系。

    图 6  HAO、NR活性与NH+4-N,TN去除率之间的关系
    Figure 6.  Relationship between HAO and NR activities and removal rates of NH+4-N and TN

    1)减少Orbal氧化沟外侧沟道转刷开启数量,可有效地提高实际污水处理厂TN的去除率。

    2)转刷开启数量减少后,Orbal氧化沟外侧沟道内溶解氧含量降低,缺氧或厌氧区明显延长,局部微环境发生改变。

    3)在此过程中,微生物种群及功能微生物含量保持稳定,未发生明显变化。关键酶NR活性随转刷开启数量的减少而升高。并且关键酶NR活性与TN去除效率呈正相关关系。本研究为实际污水处理厂提标改造参数及工艺选择提供了参考。

  • 图 1  SBR反应装置示意图

    Figure 1.  Schematic diagram of the SBR reaction unit

    图 2  R1系统在添加PLL前后NO3-N浓度的变化和对NO3-N的去除率

    Figure 2.  Variation of NO3-N concentration and removal efficiency of NO3-N in R1 system before and after adding pretreated landfill leachate

    图 3  R0、R1反应器典型周期内硝态氮和亚硝态氮变化

    Figure 3.  Variations of nitrate nitrogen and nitrite nitrogen in R0 and R1 reactors during typical cycles

    图 4  不同C/N在不同前处理垃圾渗滤液添加比例条件下VDN和COD去除率

    Figure 4.  Removal rates of VDN and COD under the conditions of different C/N and pretreated landfill leachate addition ratios

    图 5  R0和R1系统运行第65天时不同分类水平上的微生物群落结构

    Figure 5.  Microbial community structure at different taxonomic levels in R0 and R1 systems on the 65th day of stable operation

    图 6  R0和R1系统内反硝化功能基因的相对丰度

    Figure 6.  Relative content of denitrifying functional genes in R0 and R1 system

    表 1  前处理垃圾渗滤液掺入比和乙酸钠投加量

    Table 1.  Mixing ratio of pretreated landfill leachate and sodium acetate dosage

    PLL添加体积分数/%乙酸钠投加量/g
    C/N=2.5C/N=3.2C/N=4.5C/N=5.0C/N=5.6C/N=6.1
    01.792.293.213.504.004.36
    51.652.153.073.363.864.22
    101.512.012.933.223.724.08
    151.371.872.793.083.583.94
    201.231.732.652.943.443.80
    251.091.592.512.803.303.66
    PLL添加体积分数/%乙酸钠投加量/g
    C/N=2.5C/N=3.2C/N=4.5C/N=5.0C/N=5.6C/N=6.1
    01.792.293.213.504.004.36
    51.652.153.073.363.864.22
    101.512.012.933.223.724.08
    151.371.872.793.083.583.94
    201.231.732.652.943.443.80
    251.091.592.512.803.303.66
    下载: 导出CSV
  • [1] ZALA S L, AYYER J, ANJANA J. Nitrate removal from the effluent of a fertilizer industry using a bioreactor packed with immobilized cells of Pseudomonas stutzeri and Comamonas testosteroni[J]. World Journal of Microbiology & Biotechnology, 2004, 20(7): 661-665.
    [2] BIRADAR P M, DHAMOLE P B, NAIR R R, et al. Long-term stability of biological denitrification process for high strength nitrate removal from wastewater of uranium industry American Institute of Chemical Engineers[J]. Environmental Progress, 2008, 27(3): 365-372. doi: 10.1002/ep.v27:3
    [3] SAITUA H, GIL R, PADILLA A P. Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater[J]. Desalination, 2011, 274(1/2/3): 1-6.
    [4] SONG H, ZHOU Y, LI A, et al. Selective removal of nitrate from water by a macroporous strong basic anion exchange resin[J]. Desalination, 2012, 296(13): 53-60.
    [5] 杨敏, 孙永利, 郑兴灿, 等. 不同外加碳源的反硝化效能与技术经济性分析[J]. 给水排水, 2010, 46(11): 125-128. doi: 10.3969/j.issn.1002-8471.2010.11.032
    [6] YANG X P, WANG S H, ZHOU L X. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6[J]. Bioresource Technology, 2012, 104(2): 65-72.
    [7] 熊建英, 郑正. 垃圾填埋场渗滤液溶解性有机质特性及其去除技术综述[J]. 环境化学, 2015, 34(1): 44-53. doi: 10.7524/j.issn.0254-6108.2015.01.2014033001
    [8] 袁敏, 周琪, 杨殿海, 等. 垃圾渗滤液为碳源时A2/O法的脱氮除磷研究[J]. 中国给水排水, 2008, 24(11): 27-29. doi: 10.3321/j.issn:1000-4602.2008.11.008
    [9] KACZOREK K, LEDAKOWICZ S. Kinetics of nitrogen removal from sanitary landfill leachate[J]. Bioprocess Bioprocess and Biosystems Engineering, 2006, 29(5/6): 291-304.
    [10] 欧阳科, 黎丽华, 陈媛, 等. 膜生物反应器(MBR)处理垃圾渗滤液的脱氮研究[J]. 生态环境学报, 2011, 20(4): 706-710. doi: 10.3969/j.issn.1674-5906.2011.04.021
    [11] PAVAN P, BATTISTONI P, FAVA G. Biowaste fermentation and phosphor us crystallization as a way to improve the reliability of the BNR processes[J]. Water Environment & Technology, 1996, 20(4): 131-140.
    [12] SANS C, MATA-ALVAREZ J, CECCHI F, et al. Volatile fatty acids production by mesophilic fermentation of mechanically sorted urban organic wastes in a plugflow reactor[J]. Bioresource Technology, 1995, 51(1): 89-96. doi: 10.1016/0960-8524(95)95866-Z
    [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [14] ELEFSINIOTIS P, WAREHAM D G. Utilization patterns of volatile fatty acids in the denitrification reaction[J]. Enzyme and Microbial Technology, 2007, 41(1/2): 92-97.
    [15] ELEFSINIOTIS P, WAREHAM D G, SMITH M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnology, 2004, 114(3): 289-297. doi: 10.1016/j.jbiotec.2004.02.016
    [16] 刘沛然. Ca2+、Mg2+对垃圾渗滤液厌氧生物处理及微生物群落的影响研究[D]. 合肥: 安徽建筑大学, 2017.
    [17] 梅林玲, 于静洁, 张燕, 等. 难降解有机污染物的共代谢研究进展[J]. 天津城建大学学报, 2018, 24(6): 423-429.
    [18] MENG X, XIANG Y Y, HENG J G, et al. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp.[J]. Bioresource Technology, 2019, 273: 56-62. doi: 10.1016/j.biortech.2018.10.087
    [19] 周梦娟, 缪恒锋, 陆震明, 等. 碳源对反硝化细菌的反硝化速率和群落结构的影响[J]. 环境科学研究, 2018, 31(12): 2047-2054.
    [20] YAN Y L. Structural and functional analysis of denitrification genes in Pseudomonas stutzeri A1501[J]. Science China Life Sciences, 2005, 48(6): 585-592. doi: 10.1360/062005-45
    [21] QIAO N H, XI L J, ZHANG J J. Thauera sinica sp. nov.: A phenol derivative-degrading bacterium isolated from activated sludge[J]. Antonie van Leeuwenhoek, 2017, 111(6): 945-954.
    [22] 王艳青. Pannonibacter sp. W1降解对氨基苯磺酸的特性研究[D]. 大连: 大连理工大学, 2009.
    [23] ELENA S G, TATJANA N Z, TATJANA P T. Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region)[J]. Extremophiles, 2003, 7(3): 213-220. doi: 10.1007/s00792-002-0312-5
    [24] SUN Y L, LI A, ZHANG X N, et al. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 3243-3248. doi: 10.1007/s00253-014-6221-6
    [25] PINTATHONG P, RICHARDSON D J, SPIRO S, et al. Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond[J]. Electronic Journal of Biotechnology, 2009, 12(2): 1-11.
  • 加载中
图( 6) 表( 1)
计量
  • 文章访问数:  4704
  • HTML全文浏览数:  4704
  • PDF下载数:  69
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-21
  • 录用日期:  2019-04-26
  • 刊出日期:  2019-11-15
刘华光, 荣超, 张金松, 周星煜. 添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析[J]. 环境工程学报, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
引用本文: 刘华光, 荣超, 张金松, 周星煜. 添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析[J]. 环境工程学报, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
LIU Huaguang, RONG Chao, ZHANG Jinsong, ZHOU Xingyu. Denitrification efficiency and microbiological analysis of sludge with addition of the pretreated landfill leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078
Citation: LIU Huaguang, RONG Chao, ZHANG Jinsong, ZHOU Xingyu. Denitrification efficiency and microbiological analysis of sludge with addition of the pretreated landfill leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2610-2618. doi: 10.12030/j.cjee.201902078

添加前处理垃圾渗滤液污泥反硝化效能及微生物学分析

    通讯作者: 周星煜(1988—),男,博士,工程师。研究方向:污水生物处理技术。E-mail:zhouxingyu2017@163.com
    作者简介: 刘华光(1993—),男,硕士研究生。研究方向:污水生物脱氮新技术。E-mail:1017012145@qq.com
  • 1. 广州大学土木工程学院,广州 510006
  • 2. 深圳市水务(集团)有限公司,深圳 518031
  • 3. 深圳城市污水处理与再生利用工程实验室,深圳 518001
  • 4. 哈尔滨工业大学环境学院,哈尔滨 150090
基金项目:
中国博士后科学基金资助项目(2019M653086);深圳市水务集团科研项目(20180004)

摘要: 以探究前处理垃圾渗滤液作为去除高浓度硝态氮外加碳源的可行性为目的,建立SBR系统R0、R1(分别以无水乙酸钠、前处理垃圾渗滤液+无水乙酸钠作为碳源),采用模拟高浓度硝态氮废水培养获得快速高效反硝化活性污泥,考察了其脱氮效能并进行了分子生物学分析。结果表明:在PLL添加体积分数为10%时,R1系统在2.5 h内可将硝态氮几乎完全去除,反硝化速率高达58.05 mg·(g·h)−1,是R0系统的1.79倍;16S rDNA扩增子测序结果显示,R0、R1反应器内微生物种群类别较为相似,丰度位于前3位的优势反硝化菌分别为假单胞菌属(Pseudomonas)、陶厄氏菌属(Thauera)和Pannonibacter,但相对丰度存在差异;经qPCR测定,实验组R1中反硝化基因narG、nirK、nirS和norB的相对表达量显著高于对照组R0。前处理垃圾渗滤液作为外加碳源可以提高污泥反硝化活性。

English Abstract

  • 高浓度硝态氮废水来源广泛,其中大部分源于工业废水。例如,化肥加工厂产生的废水中硝态氮浓度可达950 mg·L−1[1];在核工业处理放射性金属制品过程中,通常也会产生高浓度硝态氮废水[2]。此外,采用物化法处理低浓度硝态氮废水时产生的浓缩液,也是其来源之一。例如,离子交换法产生的脱附液[3]、NF浓缩液与RO浓缩液[4]等。在利用能够彻底去除氮素的生物法处理此类废水时,反硝化过程会消耗大量碳源,甲醇、乙酸和葡萄糖等传统外加碳源会带来高昂的成本问题[5],且容易出现 pH升高过快和NO2-N积累现象[6]。因此,可采用新型外加碳源来代替传统碳源。垃圾渗滤液原液就是其中之一,但却不可避免地引入了大量难降解有机物和重金属离子等。然而,针对浓度比原液较低但碳源依旧可观的前处理垃圾渗滤液作为反硝化外加碳源的研究则鲜有报道。

    国内外在垃圾渗滤液处理方面的技术还处在不断发展和研究的阶段。随着人民生活水平的改善,城市生活垃圾的产量迅速增加[7],现有的NF、反渗透、活性炭吸附等深度处理工艺,由于结构复杂、成本高昂,导致其处理能力跟不上垃圾渗滤液的产生速度,不能及时处理经过前序工艺所带来的初级处理液。因此,寻求合理处置前处理垃圾渗滤液(pretreated landfill leachate,PLL)的途径意义重大[8]。相对于垃圾渗滤液原液,前处理垃圾渗滤液的成分复杂度降低,大分子有机物、重金属离子等有毒物质含量大大减少,TN和COD也得到一定的去除[9-10];同时,PLL中所含的短链脂肪酸 (SCFA)、挥发性脂肪酸(VFAs)等快速可生物降解有机物(属于第一类基质)[11-12],可为反硝化过程提供更易于微生物同化的碳源物质。

    本研究以无水乙酸钠和PLL为混合碳源,对比在不同PLL添加比例条件下,活性污泥处理高浓度硝态氮时的反硝化特性,结合实时荧光定量PCR(qPCR)技术及16S rDNA测序分析,揭示了活性污泥系统内部微生物结构特征和功能基因与系统反硝化效能之间的关系,以期为处理高浓度硝态氮废水选择经济高效的外加碳源提供技术参考,并深入探究前处理垃圾渗滤液的高效利用模式。

  • 模拟废水水质。实验以模拟高浓度硝态氮废水为考察对象,驯化阶段用无水乙酸钠为COD唯一来源,启动成功后添加PLL作为混合碳源;利用KNO3作为唯一氮源;以KH2PO4配制磷酸盐质量浓度;以MgSO4和CaCl2满足反硝化菌对Mg2+和Ca2+的需求;微量元素添加量为1 mL·L−1,1 L微量元素溶液中含有10.00 g EDTA、1.50 g FeCl3·6H2O、0.03 g CuSO4·5H2O、0.12 g ZnSO4·7H2O、0.15 g CoCl2·6H2O、0.12 g MnCl2·4H2O、0.06 g Na2MoO4·2H2O、0.18 g KI、0.15 g H3BO3;实验全过程各反应器内DO ≤ 0.4 mg·L−1,保持缺氧状态;进水pH控制在7.5 ± 0.1;水温为室温,即21.5~25.6 ℃。

    前处理垃圾渗滤液水质及来源。深圳市下坪垃圾填埋场采用氨吹脱+厌氧生物滤池+A/A/O+MBR+NF的新型组合工艺处理垃圾渗滤液,本研究所用前处理垃圾渗滤液取自该垃圾填埋场厌氧生物滤池出水,此系统前2步流程已经有效降解垃圾渗滤液原液中的氨氮、SS等主要污染物,前处理垃圾渗滤液中的COD主要来源于VFAs和腐殖酸。具体水质成分如下:COD (1 989±50) mg·L−1NH+4-N (8.5±3.5) mg·L−1,DO (0.2±0.1) mg·L−1,Ca2+ (335±14) mg·L−1,Mg2+ (13.2±3.8) mg·L−1,As (0.253±0.096) mg·L−1,Cd (0.04±0.01) mg·L−1

  • 实验装置由2个相同的有机玻璃材质柱形SBR (R0和R1)组成,有效柱高为65 cm,内径为10 cm,有效容积10 L,在反应器底部设有排泥口,直径为10 mm。反应器侧面15、25、35、45、55 cm处分别设有取样口,反应器顶部设置搅拌器,使泥水保持混合状态,反应器进水方式为上进下出,反应装置如图1所示。

  • 实验分为3个阶段,即驯化阶段、反硝化速率对比阶段、最佳投加比例研究阶段。驯化阶段将活性污泥接种在R0及R1反应器中,无水乙酸钠作为唯一碳源培养,控制进水碳氮比(COD/NO3-N,下称C/N)为5.0,硝态氮浓度根据驯化程度采取阶梯式上升的方式在50~500 mg·L−1内逐渐增加。微生物驯化完成后,R0作为对照组按原驯化方式运行,而R1反应器则以无水乙酸钠 + PLL为碳源进行培养,此时PLL添加体积分数为10%,提供足量电子供体以排除碳源不足的影响,从而对2种不同碳源的反硝化速率进行比较。为了探究前处理垃圾渗滤液的最佳掺入比例,设置C/N分别为2.5、3.2、4.5、4.9、5.6、6.1的批次实验,每批6组反应器(在六连搅拌器内进行)中,前处理垃圾渗滤液的投加体积分数分别为0%、5%、10%、15%、20%、25%,无水乙酸钠的添加量则依次减少,具体分配情况见表1。测定每组每批次的反硝化速率和COD去除率,重复3个周期;批次实验活性污泥均取自R1反应器,接种300 mL纯水洗涤3次后的污泥,最终体积为1.0 L。

  • 在固定时间点于采样口取10 mL泥水混合液,静沉5 min,取适量上清液并稀释一定倍数后,用0.22 μm微滤膜过滤,再经消解器(DRB200,美国哈希)消解2 h后用分光光度计(DR3900,美国哈希)对COD进行测定,硝态氮和亚硝态氮浓度采用离子色谱法[13]测定,MLVSS采用马弗炉灼烧重量法[13]测定,以单位重量MLVSS在单位时间内对硝态氮的去除量表征反硝化速率(VDN, mg·(g·h)−1)。在系统运行的第65天,分别从R0、R1反应器底部取进水后15 min泥水混合液50 mL,3 500 r·min−1离心15 min后,去除上清液取其沉淀物,将样品标记为R0-0、R1-1;16S rDNA测序送至测序公司检测。

  • R1系统运行结果如图2所示。0~45 d为驯化阶段,以无水乙酸钠作为碳源培养接种污泥以提高反硝化效能,每天测定1个周期的出水NO3-N浓度。初始进水NO3-N质量浓度设置为50 mg·L−1,启动阶段共经过5级逐次提高,具体为50 mg·L−1→100 mg·L−1→200 mg·L−1→300 mg·L−1→400→500 mg·L−1。每级去除率达到80%时,提高硝酸钾投加量,使NO3-N质量浓度最终维持在约500 mg·L−1,当去除率保持在 90%以上,并连续1周效果保持稳定时,视为反应器启动成功;第46天开始以10%的体积分数添加前处理垃圾渗滤液,此后出水硝态氮浓度出现较大波动,系统经过11 d的适应,硝态氮去除率慢慢提高到98.3% ± 1.0%,第56天之后达到稳定。整个运行过程出水未检测出氨氮,亚硝氮质量浓度均小于10 mg·L−1。经驯化的反硝化菌已经很好地适应高浓度的NO3-N,能够满足后续批次实验在高负荷条件下研究添加前处理垃圾渗滤液作为碳源时脱氮效能的要求。

  • 在R0、R1反应器中分别以无水乙酸钠、PLL+无水乙酸钠为碳源,并使PLL添加的体积分数为10%,控制各反应器C/N=5.0,在电子供体足量情况下对比其反硝化速率,结果如图3所示。由图3可以看出,R0系统将硝态氮几乎完全去除(出水浓度低于检出下限)需要约6.0 h,反硝化速率为32.32 mg·(g·h)−1,而R1系统在约需2.5 h即可去除相同浓度的硝态氮,平均反硝化速率可高达58.05 mg·(g·h)−1,是R0的1.79倍。这主要是因为PLL中COD来源较为多样,相对于R0的单一碳源,R1的混合碳源更有利于加速SBR的反硝化过程,从而提高脱氮速率。ELEFSINIOTIS等[14-15]研究认为,当系统内存在多种碳源时,微生物可以同时利用多种电子供体。由此可推测,R1系统内发生的不是单一的零级反应,而是结合多种碳源参与的一种耦合反应,故相比只有单一碳源的R0系统而言,R1系统有着更快的反硝化速率。此外,PLL中富含的Ca2+和Mg2+也是促进微生物快速生长的一个因素。刘沛然[16]用ASBR法处理垃圾渗滤液时,发现25 mmol·L−1的Ca2+和Mg2+能够有效促进反硝化菌的代谢活性。

  • 为进一步探究不同PLL添加比例时碳、氮的去除情况,批次实验结果如图4所示。由图4(a)图4(b)可以看出,C/N为2.5、3.2时,反硝化速率与PLL添加比例呈反比例关系。这是由于在C/N过低条件下,随着PLL添加量的增多,乙酸钠添加量减少,大分子有机物的相对含量会超过专性大分子有机物的降解需求量,导致电子供体在周期内不能把高浓度的NO3-N彻底还原,从而降低单位时间硝态氮的还原量。在C/N为4.5和5.0条件下,PLL添加体积分数 ≤ 10%时,VDN随PLL添加量增加而升高,最大值分别为61.03 mg·(g·h)−1和62.28 mg·(g·h)−1;当PLL添加体积分数大于10%时,反硝化速率随添加量的增加而降低,VDN在PLL添加的体积分数为25%时达到最低值,分别为45.82 mg·(g·h)−1和32.71 mg·(g·h)−1。这是由于此条件下小分子碳源和复杂碳源在系统内的相对含量与不同菌属对各种碳源的需求之间达到一种平衡,微生物间的协同作用加快了硝态氮的还原速率。相反,可以看到C/N为5.6和6.1时的反硝化速率随PLL体积分数的增加而降低。这可能是因为R1系统内发生了共代谢作用,在共代谢机制下,生长基质和非生长基质的质量浓度比值过高会对关键酶的生成产生竞争性抑制作用[17],在R1系统中乙酸钠和硝态氮充当生长基质的一部分,PLL中的复杂有机物(腐殖酸等)则充当非生长基质,当C/N为5.6和6.1时乙酸钠的投加量很高,故可以合理推测,此时生长基质和非生长基质的质量浓度比值超过了共代谢的需求范围,添加PLL反而会降低共代谢作用,进而降低硝态氮的去除速率[18]。将PLL添加量换算为COD占比,碳氮比4.5~5.0且PLL添加的体积分数为5%~15%时所对应的COD占比为4.10%~13.5%。由此可见,投加PLL所带来的COD占比在4.10%~13.5%范围内能够促进硝态氮的还原速率。

    另外,由图4(c)~(f)还可以看出,在C/N为4.5~6.1时,COD去除率随PLL添加比例的增加逐渐升高。这说明添加PLL作为混合碳源可以提高乙酸钠利用率,减少乙酸钠投加量。但是,在C/N为5.6和6.1时,COD去除率均小于64.96%;而在C/N 为3.2、4.5、5.0时的COD去除率最大分别可达到96.77%、84.38%、82.67%。因此,综合考虑COD利用率和反硝化速率2方面因素,建议在C/N为3.2~5.0条件下,将PLL的投加体积分数控制在5%~15%,能够在兼顾COD去除率的同时,也可以得到高效的反硝化速率。

  • 1)添加前处理垃圾渗滤液对菌群结构及相对丰度的影响。经高通量测序,2个样本去除嵌合体后的有效序列数分别为36 591和39 831,Shannon和Simpson指数分别为2.366、2.511和0.738、0.686,文库覆盖率均为100%,表明测序结果真实可靠。图5为R0和R1系统运行第65天时不同分类水平上的微生物群落结构。由图5(a)可知,2个反应器均被检出8个纲,对照组R0反应器泥样中相对丰度大于1%的优势菌有3种,分别为Gammaproteobacteria(γ-变形菌纲,72.78%)、Alphaproteobacteria(α-变形菌纲,20.98%)、Bacteroidia(拟杆菌纲,4.77%),占比之和为98.53%。这与周梦娟等[19]用乙酸钠为碳源培养富集的微生物群落具有较高的相似度。实验组R1反应器泥样中相对丰度大于1%的优势菌有4种,分别为γ-变形菌纲(77.66%)、α-变形菌纲(13.34%)、拟杆菌纲(4.17%)和Clostridia(梭菌纲,3.21%),占比之和为98.38%。添加PLL可以提高纲水平上GammaproteobacteriaClostridia的相对丰度。

    图5(d)可知,在属水平,R0和R1都被检出有17种菌属,其中Pseudomonas(假单胞菌属)、Thauera(陶厄氏菌属)、PannonibacterProteiniphilum均为2个反应器内的优势菌属,相对丰度分别为54.75%、13.26%、1.49%、1.79%和59.39%、17.7%、1.95%、1.97%。从丰度变化能够看出,这4种反硝化功能菌在R1中都得到强化和富集,而Pseudomonas[20]ThaueraPannonibacter均具有良好的反硝化特性。QIAO等[21]在石化废水中分离出1株革兰氏阴性杆状菌Thauera sp.K11,发现其能利用10多种酚类衍生物作为电子供体进行反硝化;王艳青[22]利用MBR处理芳香族磺酸类有机废水时,发现Pannonibacter sp.W1能够有效降解对氨基苯磺酸。这进一步证明了添加前处理垃圾渗滤液可提高反硝化效率;此外,与科层面相似,属层面R0的Flavobacterium丰度高于R1,但R1中的Anoxynatronum丰度为1.85%,属于优势菌属,为R0的46.25倍(其在R0中仅占0.04%)。这说明添加前处理垃圾渗滤液有利于Anoxynatronum生长。ELENA等[23]在贝加尔湖分离出了一种嗜碱厌氧型菌属Anoxynatronum,并发现它可以利用纤维素等大分子有机物为碳源实现反硝化,能够分解结构较为复杂的化合物。这解释了批次实验中COD去除率随前处理渗滤液添加量增加而升高的现象。

    2)添加前处理垃圾渗滤液对反硝化功能基因相对丰度的影响。反硝化过程包括4步反应(NO3-N→NO2-N→NO→N2O→N2),分别由硝酸还原酶(NAR)、亚硝酸还原酶(NIR)、一氧化氮还原酶(NOR)和一氧化二氮还原酶(NOS)进行催化,这4种功能蛋白的编码基因分别是narnirnornos。由图6可知,除了NOS编码基因nosZ外,基因narG、nirS、nirK和norB的相对含量在R1中分别提高了4.98、3.69、10.80和2.38倍。NOS的作用是将N2O催化还原为N2,但这并非是反硝化的限速步骤,决定整个反硝化速率的是NIR将NO2N转化为NO的过程[24]。因此,R1中的nosZ相对含量低于R0并不会抵消其他功能基因的高表达活性对反硝化速率的促进作用。nir基因分为编码铜型亚硝酸还原酶(Cu-NiRs)的nirK和编码血红素cd1型亚硝酸还原酶(cd1-NiRs)的nirS,PLL所含的铜离子为Cu-NiRs单体的Ⅱ型Cu提供了足量的底物结合位点,因此,增强了nirK的表达;cd1-NiRs为一种同二聚体双功能酶,发挥催化作用时以天青蛋白、假天青蛋白或细胞色素c551作为电子供体,由此可以推测,PLL为其提供了所需电子供体,从而提高了nirK的相对表达量。PINTATHONG等[25]的研究显示,添加Fe(III)和Mo(Ⅵ)可以提高NAR活性,这可能与PLL含有的Fe3+、Mo6+可以增强narG的相对表达量有关。qPCR对功能基因的相对定量结果很好地解释了2个反应器所表现出的反硝化效能差异。

  • 1)以无水乙酸钠为唯一碳源处理高浓度硝态氮废水,获得了快速高效反硝化活性污泥,最大反硝化速率为32.32 mg·(g·h)−1;当PLL添加体积分数为10%时,最大反硝化速率升至58.05 mg·(g·h)−1

    2) PLL充当碳源时能提高乙酸钠利用率。在C/N为3.2~5.0条件下,PLL投加比例为10%~15%,最大COD去除率为96.77%,是添加PLL前的1.23~1.41倍。

    3)添加PLL对微生物种群类别没有明显影响,但改变了优势菌种群的相对丰度,PseudomonasThaueraPannonibacterProteiniphilum相对丰度有所提高,AlphaproteobacteriaBacteroidia相对丰度则有所降低。

    4) PLL的加入使反硝化功能基因 narG、nirK、nirS和norB的相对含量分别提高了4.98、3.69、10.80和2.38倍,但一氧化二氮还原酶编码基因nosZ的相对表达量却有所降低。

参考文献 (25)

返回顶部

目录

/

返回文章
返回