低温条件下不同曝气方式对硫自养湿地脱氮效能的影响

黄雪玲, 刘慧敏, 何启帆, 熊瑞涵, 蔡婷婷, 任拥政, 康建雄, 李道圣, 刘冬啟. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
引用本文: 黄雪玲, 刘慧敏, 何启帆, 熊瑞涵, 蔡婷婷, 任拥政, 康建雄, 李道圣, 刘冬啟. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
HUANG Xueling, LIU Huimin, HE Qifan, XIONG Ruihan, CAI Tingting, REN Yongzheng, KANG Jianxiong, LI Daosheng, LIU Dongqi. Effect of different aeration modes at low temperature on nitrogen removal efficiency of sulfur autotrophic wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
Citation: HUANG Xueling, LIU Huimin, HE Qifan, XIONG Ruihan, CAI Tingting, REN Yongzheng, KANG Jianxiong, LI Daosheng, LIU Dongqi. Effect of different aeration modes at low temperature on nitrogen removal efficiency of sulfur autotrophic wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058

低温条件下不同曝气方式对硫自养湿地脱氮效能的影响

    作者简介: 黄雪玲(1994—),女,硕士研究生。研究方向:人工湿地污水处理工艺。E-mail:2416467768@qq.com
    通讯作者: 任拥政(1975—),男,博士,副教授。研究方向:污水高效低耗处理技术等。E-mail:renyz@163.com
  • 基金项目:
    国家重点研发计划(2016YFC0400703-2)
  • 中图分类号: X522

Effect of different aeration modes at low temperature on nitrogen removal efficiency of sulfur autotrophic wetland

    Corresponding author: REN Yongzheng, renyz@163.com
  • 摘要: 为提高人工湿地的脱氮效率,将硫磺与石灰石按体积1∶1的比例填充于波形潜流湿地内,辅助间歇人工曝气,探讨了在冬季低温条件下,间歇曝气时间对波形潜流人工湿地脱氮效率和反硝化作用的影响,并分析了硫自养湿地的作用机理和节能减排特性。结果表明,间歇曝气运行方式有效提高了湿地内部溶解氧水平,在湿地内部营造了一种交替的好氧和缺氧环境,可以促进硝化和反硝化作用,有效地解决了人工湿地在冬季(10 ℃以下)脱氮效率低的问题。湿地冬季运行时,曝气间歇时间为4 h的条件下,TN去除率高达59.4%,相比连续曝气方式提高20%~30%。与传统处理工艺相比,硫自养湿地的能耗节省率达到50%以上,且在一定程度上减少了CO2的排放,实现了高效脱氮和节能环保。
  • 在过去几十年中,农业和工业活动以及城市社区的污水导致了严重的水源污染[1]。面对越来越多的污染,衍生了各种新兴的污水处理技术。以电化学为基础的电化学高级氧化工艺受到了人们的青睐。在电化学高级氧化体系中可以通过阳极直接氧化、阴极还原或产生具有强氧化活性的物质,如羟基自由基(∙OH),将有机污染物矿化为CO2和H2O等[2-4]。但是在传统的电化学体系(二维电极体系)中存在电流效率低、电极面积小等缺点,三维粒子电极体系应运而生[5-6]。三维粒子电极是在二维电解槽中加入粒子电极,以此形成三维粒子电极系统。粒子电极的加入,可以通过增大电化学反应的面积,或形成一系列微电解池提高污染物去除效率,因此粒子电极的选择对于三维电极体系至关重要[7-8]

    蒙脱石是土壤中一种常见的黏土矿物,是膨润土的主要组成成分[9]。蒙脱石资源储量丰富,价格低廉。蒙脱石矿物表面常带有负电荷,为中和负电荷达到电荷平衡,在矿物层间吸附了大量的水合阳离子,使得层间具有大量的可交换阳离子[10-11]。因此,蒙脱石层间域除了具有交换吸附等性质,还具有层间柱撑的特性。以铁对蒙脱石进行改性作为催化剂已经有许多的研究报道,但是到目前为止,大部分研究更多集中于光-Fenton体系或作为非均相催化剂应用于Fenton体系中,将其作为粒子电极应用于电化学体系尚未见相关报道[9, 12-13]。而且铁改性蒙脱石多以粉末状作为催化形式,使用后回收困难,这限制了其应用[14]。因此,研究铁改性蒙脱石作为粒子电极的性能有助于拓宽污染物光/电复合降解体系的应用,解决催化剂难回收的问题,具有一定的实用意义。

    本研究以铁改性蒙脱石(Fe-Mt)制备三维粒子电极,首先通过SEM-EDS和XRD表征对粒子电极进行了形貌与物相分析,并探究了pH、粒子电极投加量、槽电压以及进出水流量对电化学粒子电极体系的影响;然后通过与二维电极体系比较确定了Fe-Mt作为粒子电极的有效性,结合自由基抑制实验以及溶液中相关物质的检测初步探究了Fe-Mt粒子电极对亚甲基蓝去除的强化机理;最后进行了Fe-Mt粒子电极的稳定性实验。该研究有助于拓宽铁改性蒙脱石在污染物光/电复合降解体系的应用。

    亚甲基蓝、无水碳酸钠(Na2CO3)、结晶硝酸铁(Fe(NO3)3·9H2O)、七水合硫酸亚铁(FeSO4·7H2O)、氢氧化钠(NaOH)等试剂均购自天津市盛和化学试剂有限公司,以上试剂均为分析纯。

    Fe-Mt催化剂和Fe-Mt粒子电极的制备。合成方法在参考文献基础上有所改进[15],步骤如下:高速搅拌条件下,将Na2CO3粉末缓慢加入0.2 mol·L−1的硝酸铁溶液中,控制好碱/铁比(OH/Fe摩尔比为1.0),将所得到的红褐色半透明铁柱撑液在室温下陈化24 h。然后,将适量蒙脱石加入去离子水中,制成2%的黏土浆液。在恒温水浴锅中保持60 ℃,缓慢滴入上述陈化好的铁柱撑准备液 (1 g蒙脱石样品滴加10 mmol Fe3+离子溶液)。持续搅拌2 h,所得的混浊液于室温下陈化24 h。陈化产物经无水乙醇洗涤3次,然后用去离子水离心-洗涤多次(至少6次)后在80 ℃下干燥至恒重为止,研磨过250目,密封备用。碱铁比为1.0样品标记为Fe-Mt。将制备好的Fe-Mt催化剂、黏土与成孔剂按照3∶6∶1配比在80 ℃烘干后,混合均匀,采用球磨机碾至粉末,加入适量水滚制成4~6 mm小球,然后在马弗炉中以600 ℃煅烧40 min,自然冷却至室温备用。

    静态实验。实验在500 mL容器中进行(图1)。称取20 mg·L−1的亚甲基蓝溶液,使用H2SO4调节pH至3.0。加入以1.5 g·L−1的Na2SO4作为支持电解质,加入0.2 mmol·L−1的FeSO4·7H2O作为Fenton反应催化剂,充分溶解后倒入电解槽中。将一定量的粒子电极加入至电解槽中,以石磨棒与活性炭纤维分别作为阳极与阴极,电极板间距为6 cm,调节至电压为5 V进行电解。电解过程中曝气头持续在阴极进行恒流曝气,流量为3.0 L·min−1,粒子电极在使用前预先在亚甲基蓝溶液吸附达到饱和。

    图 1  Fe-Mt三维电极反应装置图
    Figure 1.  Diagram of Fe-Mt three-dimensional electrode reaction device

    连续流实验。在静态实验装置的左右两端分别安装一台BT100-2J调速型蠕动泵,控制相同的进出水流量。采用配制好的浓度为20 mg·L−1的亚甲基蓝溶液作为进水电解液。

    采用配有EDS分析系统的Quanta 200FEG型场发射环境扫描电镜对制备的样品进行形貌测试表与表面元素组成测试。D/max-IIIB型X-射线衍射光谱仪(日本)对样品物相进行表征测试。表征过程中的管电压为40 kV,管电流为30 mA。测试结果与JCPDS(粉末衍射标准联合会)标准卡片进行比对。电解液中的H2O2 浓度采用草酸钛钾比色法测定。采用1,10-邻菲罗啉分光光度法(HJ/T 345-2007)测定溶液中总溶解性铁离子浓度。YG900G10010型数字直流稳压稳流电源购自上海翼昇电子有限公司。SL1000便携式多参数分析仪购自美国HACH公司。电子分析天平购自梅特勒托利多仪器(上海)有限公司。KH-50B型超声波清洗器购自昆山禾创超声仪器有限公司。SB-178型恒流曝气泵购自Sobo公司。

    1) Fe-Mt粒子电极的表面形貌与元素表征。图2是Fe-Mt三维粒子电极的SEM-EDS表征结果。由图2(a)可见,制备出的三维粒子电极是一种形状较为规则的圆形小球,粒径为4~6 mm内。Fe-Mt三维粒子电极主要由浅黄色黏土与深红色Fe-Mt混合烧制而成,因此,Fe-Mt三维粒子电极呈深黄色。在前期粒子电极烧制过程中发现当煅烧温度过高,尤其在大于800 ℃时烧制成的粒子电极结构疏松,与水接触后结构发生塌陷现象,且粒径越大越明显。而根据5 µm下SEM影像显示,本研究在600 ℃煅烧成的 4~6 mm粒径的Fe-Mt三维粒子电极表面结构质密,进一步放大倍数显示粒子电极呈现不规整的乱石结构。EDS表征(图2(c))显示粒子电极所含元素种类较多,Si、Ca、Na、O与Mg等是蒙脱石与黏土常见的元素[16]。其中,O和Si所占权重最大,分别为53.78%和22.12%。根据EDS测试可以明显看出粒子电极含有一定量Fe元素,约占8.75%。

    图 2  Fe-Mt粒子电极的SEM-EDS表征
    Figure 2.  SEM-EDS characterization of the Fe-Mt particle electrode

    2)Fe-Mt粒子电极的XRD表征。图3分别是Fe-Mt与Fe-Mt粒子电极的XRD衍射图。可以清楚地观察到在角分别为33.2°和35.7°的α-Fe2O3衍射峰[17]。然而Fe-Mt粒子电极的衍射图谱中α-Fe2O3衍射峰强度较弱,在20.8°与26.6°出现了衍射强度较高的特征衍射峰,通过对比pdf卡片,是SiO2的特征衍射峰,与EDS的表征结果一致。这说明制备成功的Fe-Mt粒子电极主要以SiO2为主要组成,这是其黏土组分占比较大导致的。

    图 3  Fe-Mt粒子电极的XRD表征
    Figure 3.  XRD patterns of the Fe-Mt particle electrode

    1) pH对亚甲基蓝去除率的影响。在电化学体系中,pH是影响污染物去除的主要影响因素之一[18]。酸性条件往往有助于污染物的去除,一方面,因为活性物质羟基自由基的氧化活性随pH升高而降低,另一方面,pH的增加会导致电化学体系中金属盐类催化剂的水解,从而降低污染物去除率[19-21]图4显示了pH对Fe-Mt三维粒子电极的影响。可以看出随着pH增加,亚甲基蓝去除率降低。在前14 min左右亚甲基蓝去除率变化较明显,随着亚甲基蓝浓度的不断降低,去除率随时间变化逐渐变缓。在pH=3.0时,亚甲基蓝去除率最高为92.91%,比pH=7.0时提高了约7%,去除率变化幅度并不明显。因此,Fe-Mt三维粒子电极的投加有助于拓宽电化学体系pH的有效作用范围。Fe-Mt三维粒子电极的投加一方面能够增大电极反应面积,另一方面可以作为非均相催化剂,避免了金属离子催化剂的水解,因此,有效拓宽了降解亚甲基蓝的pH适用范围[22-24]

    图 4  pH对亚甲基蓝去除率的影响
    Figure 4.  Effect of pH on methylene blue removal rate

    2)粒子电极投加量对亚甲基蓝去除率的影响。在槽电压5 V、pH=3.0、FeSO4·7H2O为0.2 mmol·L−1、支持电解质Na2SO4为1.5 g·L−1的条件下,改变Fe-Mt粒子电极投加量,探究投加量对三维粒子电化学体系的影响,结果如图5所示。可以看出粒子电极投加量从5 g·L−1增加至10 g·L−1的过程中,亚甲基蓝去除率有所升高,继续增大粒子电极投加量至20 g·L−1,亚甲基蓝去除率反而降低。粒子电极的投加会在电化学体系形成3种电流,即短路电流、旁路电流和反应电流,而发挥有效作用的是反应电流。粒子投加量过多将占用反应体系空间,降低有机污染物传质效率,同时增加短路电流,降低电流效率[7, 25]。因此,该体系中最佳的粒子电极投加量是10 g·L−1

    图 5  粒子电极投加量对亚甲基蓝去除率的影响
    Figure 5.  Effect of particle electrode dosage on methylene blue removal rate

    3)槽电压对亚甲基蓝去除率的影响。在电解体系不变的情况下,槽电压值会影响体系电流密度,进而影响亚甲基蓝去除率。因此,在粒子电极投加量为10 g·L−1、pH=3.0、FeSO4·7H2O为0.2 mmol·L−1、支持电解质Na2SO4为1.5 g·L−1的条件下,分别调节槽电压为3、5和7 V,探究了槽电压对三维粒子电极体系的影响,结果如图6所示。由图6可知,当槽电压从3 V升至5 V时,亚甲基蓝的去除率随之升高,但是继续增加槽电压至7 V后,亚甲基蓝的去除率升高幅度不大。这是因为在一定范围内增加槽电压,体系电流密度也会增大,阴极通过2电子反应产生的H2O2量也随之增大。H2O2的产生能够在粒子电极催化下产生活性物质去除亚甲基蓝。而当槽电压进一步增大时亚甲基蓝去除率增长不大,这与副反应的产生有关,如阴极的4电子反应与2电子反应竞争以及阳极对H2O2的直接氧化作用消耗了H2O2。因此,本研究中最适槽电压为5 V。

    图 6  槽电压对亚甲基蓝去除率的影响
    Figure 6.  Effect of cell voltage on methylene blue removal rate

    4)亚甲基蓝去除的连续流实验。连续流实验中的进出水流量能够影响水力停留时间,从而对亚甲基蓝去除率产生影响。因此,在Fe-Mt三维粒子电极体系中,以连续进出水的方式考察了进出水流量对亚甲基蓝的去除效果的影响,结果如图7所示。由图7可知,随着流量的不断减少,亚甲基蓝去除率逐渐升高。当流量由8.37 mL·min−1降低至6.29 mL·min−1时,亚甲基蓝去除率增幅较小。由此可见,进出水流量的调控对于反应体系的去除率起到重要的作用。

    图 7  进出水流量对亚甲基蓝去除率的影响
    Figure 7.  Effect of inlet and outlet water flow on methylene blue removal rate

    图8为在相同的电解条件下三维粒子电极体系与二维电化学体系对亚甲基蓝去除效果的对比。在Fe-Mt粒子电极投加量为10 g·L−1、电解20 min后,三维粒子电极体系较二维电化学体系对亚甲基蓝的去除率提高了约25%。因此,以Fe-Mt作为粒子电极应用于电化学体系是可行的。目前对于Fe-Mt的应用多集中于光-Fenton体系或非均相Fenton体系,其应用困难之一是Fe-Mt催化剂的回收性能。Fe-Mt作为催化剂投加量少,多以粉末状态分散在溶液中,应用过后难以回收[12-13]。该实验结论表明将其制作为三维粒子电极,可以有效发挥三维粒子电极的催化作用,有助于催化剂的回收。此外,Fe-Mt粒子电极也可以延伸作为光-Fenton体系的催化剂,对于光电复合体系的应用具有重要的价值。

    图 8  不同体系亚甲基蓝去除率
    Figure 8.  Methylene blue removal rate in different systems

    在Fe-Mt三维粒子电极体系中,对亚甲基蓝去除起作用的可能途径主要包括以下5条:在阳极直接氧化亚甲基蓝;溶液中添加的Fe2+(0.2 mmol·L−1)与阴极产生的H2O2反应产生∙OH氧化亚甲基蓝;在酸性条件下,粒子电极溶出额外的Fe2+,Fe2+与阴极产生的H2O2反应产生∙OH氧化亚甲基蓝;Fe-Mt粒子电极的吸附作用去除亚甲基蓝;Fe-Mt粒子电极直接催化H2O2产生∙OH氧化亚甲基蓝。针对这5种可能的路径,本研究通过向溶液加入∙OH抑制剂(甲醇)以及对H2O2和总溶解性铁离子的检测初步探究了Fe-Mt三维粒子电极体系对亚甲基蓝的去除机理,结果如图9所示。可以看出粒子电极的吸附作用对亚甲基蓝的去除作用十分有限,吸附20 min亚甲基蓝去除率仅7.34%(图9(a))。2D(二维电化学直接氧化,未加入Fe-Mt粒子电极)体系亚甲基蓝去除率约67.1%,当向2D体系加入∙OH抑制剂(甲醇)后,亚甲基蓝去除率下降至21.88%,这表明2D体系主要靠阳极直接氧化以及外加的Fe2+(0.2 mmol·L−1)与H2O2反应产生∙OH进而氧化亚甲基蓝。当向3D体系加入甲醇后,亚甲基蓝去除率下降至36.73%,这表明3D氧化体系除了依靠阳极对亚甲基蓝直接氧化外,体系产生的大量∙OH起到主导作用。图9(b)显示了3D体系与2D体系中H2O2产量随时间的变化。可以看出,2D体系H2O2产量明显高于3D体系,因此,可以确定在3D体系中,催化剂对H2O2活化效率明显高于2D体系。

    图 9  Fe-Mt粒子电极对亚甲基蓝的去除机制
    Figure 9.  Removal mechanism of methylene blue by Fe-Mt particle electrode

    为了进一步探明3D体系是依靠Fe-Mt粒子电极直接催化还是依靠额外的铁离子溶出对H2O2进行活化,对3D体系溶液中总溶解性铁离子的量进行了测定。在2D体系反应结束后总铁离子测量值约0.17 mmol·L−1(减少的铁离子浓度与铁离子的沉淀有关),因此,以3D体系总溶解性铁离子与0.17 mmol·L−1(约9 mg·L−1)的差值确定Fe-Mt粒子催化剂溶出的总铁离子浓度,结果如图9(c)所示。可以看出,在第1次使用时,3D体系产生了最高的溶解性总铁离子浓度,随着使用次数的增多,溶解性总铁离子浓度逐渐降低。因此,3D体系产生的溶解性铁离子对H2O2进行均相催化产生∙OH也是亚甲基蓝去除的途径之一。图9(d)为在向2D体系中加入0.25 mmol·L−1的Fe2+条件下与3D体系的亚甲基蓝去除效果的对比情况。可见即使向2D体系加入的Fe2+浓度大于3D体系溶解性的总Fe2+浓度,亚甲基蓝去除率依然低于3D体系。这表明3D体系溶出的铁离子不足以使其产生高的亚甲基蓝去除率。因此,Fe-Mt粒子电极对H2O2的直接催化也对亚甲基蓝去除产生作用。

    终上所述,Fe-Mt三维粒子电极体系对亚甲基蓝去除的途径具有多样性。阳极的直接氧化能够去除一部分亚甲基蓝,而粒子电极的加入能够进一步提高亚甲基蓝的去除率。在酸性条件下,阴极能够通过2电子反应产生H2O2,H2O2能够被Fe-Mt粒子电极额外溶出的Fe2+催化而产生∙OH,再进一步氧化亚甲基蓝。Fe-Mt粒子电极本身具有一定的吸附作用,这加速了亚甲基蓝与粒子电极表面的传质过程。亚甲基蓝接近粒子电极表面后,Fe-Mt粒子电极直接催化H2O2产生∙OH,对亚甲基蓝进一步降解实现了吸附-氧化的协同作用。基于此,3D体系才比2D体系对亚甲基蓝具有更高的去除率。

    材料的稳定性是决定其应用性能的重要指标。图10为电极材料的使用次数对亚甲基蓝去除率变化的影响情况。可以看出,随着使用次数的增加,亚甲基蓝去除率呈下降趋势,重复使用至第10次后,去除率下降约7%,这说明Fe-Mt三维粒子电极具有良好的电化学催化活性。由图9(c)可知,在粒子电极重复使用的过程中,粒子电极表面的铁不断融出至溶液中,且随着使用次数的增加,铁离子溶出量减少,这表明粒子电极有效活性位点的减少。此外,粒子电极在重复使用过程中存在吸附-氧化耦合的过程,亚甲基蓝分子不断在粒子电极表面积累,其可能掩盖了粒子电极表面的活性位点,从而进一步降低了催化活性。

    图 10  粒子电极的重复利用性能
    Figure 10.  Recycling performance of particle electrodes

    1) Fe-Mt三维粒子电极体系能够将亚甲基蓝去除率提高约25%,这证明其作为粒子电极的有效性。

    2)将pH由3.0增至7.0后,亚甲基蓝去除率降低了7%,表明Fe-Mt粒子电极的投加可拓宽电化学体系去除污染物的有效pH范围。

    3)除了阳极对亚甲基蓝的直接氧化,Fe-Mt粒子电极还能够对H2O2实现直接与间接催化,并结合自身一定的吸附性能对亚甲基蓝实现吸附-氧化降解去除。

  • 图 1  实验装置

    Figure 1.  Experimental device

    图 2  硫自养人工湿地基质填充图

    Figure 2.  Substrate packing diagram of sulfur autotrophic wetland

    图 3  装置整体系统

    Figure 3.  Overall system of the wetland process

    图 4  不同曝气工况下出水COD的去除率

    Figure 4.  Effluent COD removal rates underdifferent aeration conditions

    图 5  不同曝气工况COD去除率的沿程变化

    Figure 5.  Change of COD removal rates along height under different aeration conditions

    图 6  不同曝气工况下TN去除率变化

    Figure 6.  Change of TN removal rates underdifferent aeration conditions

    图 7  不同工况下氮形式的转化过程

    Figure 7.  Nitrogen form conversion under different aeration conditions

    图 8  不同曝气工况下DO和pH变化

    Figure 8.  Change of DO and pH under different aeration conditions

    图 9  不同曝气工况下NO3-N浓度的变化

    Figure 9.  Change of NO3-N under different aeration conditions

    图 10  不同曝气工况下出水硫酸根浓度

    Figure 10.  Effluent SO24 under different aeration conditions

    表 1  人工湿地进水水质

    Table 1.  Influent water quality of constructed wetlands

    平均值与标准差pHCOD/(mg·L−1)NH+4-N/(mg·L−1)NO3-N/(mg·L−1)NO2-N/(mg·L−1)TN/(mg·L−1)DO/(mg·L−1)
    平均值7.6096.429.870.450.007 113.911.38
    标准差0.2211.541.080.340.0102.260.78
    平均值与标准差pHCOD/(mg·L−1)NH+4-N/(mg·L−1)NO3-N/(mg·L−1)NO2-N/(mg·L−1)TN/(mg·L−1)DO/(mg·L−1)
    平均值7.6096.429.870.450.007 113.911.38
    标准差0.2211.541.080.340.0102.260.78
    下载: 导出CSV

    表 2  硫自养人工湿地和SBR工作效能分析

    Table 2.  Work efficiency analysis of sulfur autotrophic constructed wetland and SBR

    工况处理量/(m3·d−1)进水COD/(mg·L−1)COD去除率/%TN去除率/%COD去除负荷/(kg·d−1)COD去除耗能/(kWh·kg−1)污水耗能/(kWh·m−3)
    硫自养人工湿地50200707270.860.12
    SBR工艺79200855813.431.880.32
    垂直潜流人工湿地704645650.364 313.450.07
    工况处理量/(m3·d−1)进水COD/(mg·L−1)COD去除率/%TN去除率/%COD去除负荷/(kg·d−1)COD去除耗能/(kWh·kg−1)污水耗能/(kWh·m−3)
    硫自养人工湿地50200707270.860.12
    SBR工艺79200855813.431.880.32
    垂直潜流人工湿地704645650.364 313.450.07
    下载: 导出CSV
  • [1] 方先金. 城镇污水处理厂二级出水深度脱氮研究[J]. 水工业市场, 2012(4): 44-46.
    [2] 李鑫玮, 阜崴, 魏威, 等. 反硝化滤池深度脱氮效能分析及工程应用[J]. 中国给水排水, 2016, 32(21): 132-136.
    [3] 张海. 反硝化深床滤池深度脱氮效果的分析[J]. 环境与发展, 2018, 30(8): 114-117.
    [4] 李恋云. 生活污水自养反硝化滤池深度脱氮研究[D]. 青岛: 中国石油大学(华东), 2015.
    [5] 曾祥英, 章北平, 孙高升. 波形潜流湿地处理低浓度生活污水[J]. 环境工程, 2006, 24(5): 26-28.
    [6] 徐伟伟. 波形潜流湿地处理低浓度生活污水试验研究[D]. 武汉: 华中科技大学, 2005.
    [7] 闫凯丽, 吴德礼, 张亚雷. 我国不同区域农村生活污水处理的技术选择[J]. 江苏农业科学, 2017, 45(12): 212-216.
    [8] 王博. 复合型人工湿地对黑臭水体的净化性能及其微生物学机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [9] 钱嫦萍, 王东启, 陈振楼, 等. 生物修复技术在黑臭河道治理中的应用[J]. 水处理技术, 2009, 35(4): 13-17.
    [10] 黄锦楼, 陈琴, 许连煌, 等. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408. doi: 10.3969/j.issn.1000-8942.2006.05.009
    [11] 徐伟伟. 波形潜流湿地处理低浓度生活污水试验研究[D]. 武汉: 华中科技大学, 2005.
    [12] 孙加辉. 西北地区农村生活污水处理技术研究[J]. 环境科学与管理, 2017, 42(5): 90-93. doi: 10.3969/j.issn.1673-1212.2017.05.020
    [13] BEZBRUAH A N, ZHANG T C. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal[J]. Environmental Science Technology, 2003, 8(37): 1690-1697.
    [14] 肖宇芳, 王文忠, 王文, 等. 水平潜流和垂直流湿地处理蓟运河水的效果比较[J]. 中国给水排水, 2010, 26(7): 12-15.
    [15] 周娅, 买文宁, 梁家伟, 等. 硫磺/硫铁矿自养反硝化系统脱氮性能[J]. 环境科学, 2019, 40(4): 1-13.
    [16] 于景洋, 齐世华, 徐春雨, 等. 寒区农村污水治理技术及可持续发展研究[J]. 安徽农业科学, 2018, 46(2): 45-48. doi: 10.3969/j.issn.0517-6611.2018.02.014
    [17] 李文超, 石寒松, 王琦, 等. 硫自养反硝化技术在污废水处理中应用研究进展[J]. 水处理技术, 2017, 43(8): 1-6.
    [18] 任婕, 林晓虎, 刘伟, 等. 硫自养反硝化强化人工湿地深度处理冷轧废水[J]. 环境工程, 2018, 36(4): 6-10.
    [19] 康晓荣, 刘亚利, 周友新, 等. 间歇曝气强化人工湿地低温脱氮研究[J]. 森林工程, 2019, 35(3): 74-77.
    [20] 欧阳炬, 钱利红, 张必华, 等. 缺氧/好氧硝化工艺曝气方式试验研究[J]. 能源环境保护, 2019, 33(1): 44-47.
    [21] 陆谢娟. 低C/N比污水间歇曝气MBR脱氮研究[D]. 武汉: 华中科技大学, 2010.
    [22] 郑蓓, 张小平, 李露, 等. 交替式间歇曝气移动床生物膜反应器同步脱氮除磷[J]. 水处理技术, 2018, 44(11): 107-111.
    [23] GUADIEA A, XIA S, ZHANG Z, et al. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system[J]. Bioresource Technology, 2014, 156: 195-205. doi: 10.1016/j.biortech.2014.01.008
    [24] LIM B S, CHOI B C, YU S W, et al. Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor[J]. Desalination, 2007, 202(1/2/3): 77-82.
    [25] THIRD K A, GIBBS B, NEWLAND M, et al. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor[J]. Water Research, 2005, 39(15): 3523-3530. doi: 10.1016/j.watres.2005.06.014
    [26] YANG S, YANG F. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor[J]. Journal of Hazardous Materials, 2011, 195: 318-323. doi: 10.1016/j.jhazmat.2011.08.045
    [27] 叶建锋, 徐祖信, 李怀正. 垂直潜流人工湿地堵塞机制: 堵塞成因及堵塞物积累规律[J]. 环境科学, 2008, 29(6): 1508-1512. doi: 10.3321/j.issn:0250-3301.2008.06.009
    [28] 李芳芳, 施春红, 周北海, 等. 硫磺和黄铁矿为填料的生物滤池自养反硝化强化处理二沉尾水[J]. 环境科学研究, 2016, 29(11): 1693-1700.
    [29] 袁玉玲. 以天然黄铁矿和硫磺为硫源的自养反硝化特性研究[D]. 南京: 南京大学, 2011.
    [30] 高廷耀, 夏四清, 周增炎. 城市污水生物脱氮除磷机理研究进展[J]. 上海环境科学, 1999, 18(1): 16-18.
    [31] 丁钰, 张婷月, 黄民生, 等. 好氧反硝化菌及其在污水处理和环境修复中的研究进展[J]. 华东师范大学学报(自然科学版), 2018(6): 1-11.
    [32] 郭烨烨, 杨淑英, 黄莹, 等. 间歇曝气潜流人工湿地的污水脱氮效果[J]. 环境工程学报, 2014, 8(4): 1405-1409.
    [33] 梅龙跃. 间歇曝气垂直潜流人工湿地的污水净化效果研究[D]. 重庆: 重庆大学, 2016.
    [34] 雒维国, 王世和, 黄娟, 等. 潜流型人工湿地低温域脱氮效果研究[J]. 中国给水排水, 2005, 21(8): 37-40. doi: 10.3321/j.issn:1000-4602.2005.08.010
    [35] 黄有志. 北方地区不同类型人工湿地冬季脱氮效果及经济效益比较分析[D]. 西安: 西安建筑科技大学, 2013.
    [36] 吴芳磊. 基于硫自养反硝化的深度除磷脱氮研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [37] 吴黎明. SBR工艺污水处理厂升级改造工程的优化设计[J]. 中国给水排水, 2009, 25(16): 53-55. doi: 10.3321/j.issn:1000-4602.2009.16.016
    [38] 张恒亮, 朱铁群, 王海燕, 等. 强化反硝化脱氮湿地外加碳源研究进展[J]. 广东化工, 2017, 44(5): 92-93. doi: 10.3969/j.issn.1007-1865.2017.05.043
    [39] 武海涛. 人工湿地反硝化脱氮外加碳源选择研究[D]. 杭州: 浙江大学, 2013.
    [40] 肖蕾, 贺锋, 黄丹萍, 等. 人工湿地反硝化外加碳源研究进展[J]. 水生态学杂志, 2012, 33(1): 139-143.
    [41] 金春姬, 佘宗莲, 高京淑, 等. 低C/N比污水生物脱氮所需外加碳源量的确定[J]. 环境科学研究, 2003, 16(5): 37-40. doi: 10.3321/j.issn:1001-6929.2003.05.010
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.8 %DOWNLOAD: 3.8 %HTML全文: 90.3 %HTML全文: 90.3 %摘要: 5.9 %摘要: 5.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.8 %其他: 86.8 %Ashburn: 0.2 %Ashburn: 0.2 %Beijing: 2.8 %Beijing: 2.8 %Central: 0.1 %Central: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Dunhou: 0.1 %Dunhou: 0.1 %Guangzhou: 0.3 %Guangzhou: 0.3 %Guanshan: 0.2 %Guanshan: 0.2 %Hangzhou: 0.8 %Hangzhou: 0.8 %Harbin: 0.1 %Harbin: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 1.0 %Jinrongjie: 1.0 %Lanzhou: 0.1 %Lanzhou: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Nanjing: 0.1 %Nanjing: 0.1 %Nanning: 0.1 %Nanning: 0.1 %Newark: 0.2 %Newark: 0.2 %Qinnan: 0.1 %Qinnan: 0.1 %Shanghai: 0.7 %Shanghai: 0.7 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.4 %Taiyuan: 0.4 %Tianjin: 0.1 %Tianjin: 0.1 %Wuhan: 0.6 %Wuhan: 0.6 %Xi'an: 0.2 %Xi'an: 0.2 %Xiantao: 0.1 %Xiantao: 0.1 %Xuhui Qu: 0.2 %Xuhui Qu: 0.2 %XX: 1.9 %XX: 1.9 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zaozhuang: 0.2 %Zaozhuang: 0.2 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %北京: 0.2 %北京: 0.2 %北海: 0.2 %北海: 0.2 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %深圳: 0.5 %深圳: 0.5 %蚌埠: 0.1 %蚌埠: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.8 %郑州: 0.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AshburnBeijingCentralChang'anDunhouGuangzhouGuanshanHangzhouHarbinHyderabadJinrongjieLanzhouMountain ViewNanjingNanningNewarkQinnanShanghaiShenyangShenzhenSuzhouTaiyuanTianjinWuhanXi'anXiantaoXuhui QuXXYunchengZaozhuangZhengzhou北京北海无锡晋城深圳蚌埠运城郑州长治阳泉Highcharts.com
图( 10) 表( 2)
计量
  • 文章访问数:  4288
  • HTML全文浏览数:  4288
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-08
  • 录用日期:  2019-05-20
  • 刊出日期:  2019-11-15
黄雪玲, 刘慧敏, 何启帆, 熊瑞涵, 蔡婷婷, 任拥政, 康建雄, 李道圣, 刘冬啟. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
引用本文: 黄雪玲, 刘慧敏, 何启帆, 熊瑞涵, 蔡婷婷, 任拥政, 康建雄, 李道圣, 刘冬啟. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
HUANG Xueling, LIU Huimin, HE Qifan, XIONG Ruihan, CAI Tingting, REN Yongzheng, KANG Jianxiong, LI Daosheng, LIU Dongqi. Effect of different aeration modes at low temperature on nitrogen removal efficiency of sulfur autotrophic wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058
Citation: HUANG Xueling, LIU Huimin, HE Qifan, XIONG Ruihan, CAI Tingting, REN Yongzheng, KANG Jianxiong, LI Daosheng, LIU Dongqi. Effect of different aeration modes at low temperature on nitrogen removal efficiency of sulfur autotrophic wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2619-2628. doi: 10.12030/j.cjee.201901058

低温条件下不同曝气方式对硫自养湿地脱氮效能的影响

    通讯作者: 任拥政(1975—),男,博士,副教授。研究方向:污水高效低耗处理技术等。E-mail:renyz@163.com
    作者简介: 黄雪玲(1994—),女,硕士研究生。研究方向:人工湿地污水处理工艺。E-mail:2416467768@qq.com
  • 1. 华中科技大学环境科学与工程学院,武汉 430074
  • 2. 中国五环工程有限公司,武汉 430074
基金项目:
国家重点研发计划(2016YFC0400703-2)

摘要: 为提高人工湿地的脱氮效率,将硫磺与石灰石按体积1∶1的比例填充于波形潜流湿地内,辅助间歇人工曝气,探讨了在冬季低温条件下,间歇曝气时间对波形潜流人工湿地脱氮效率和反硝化作用的影响,并分析了硫自养湿地的作用机理和节能减排特性。结果表明,间歇曝气运行方式有效提高了湿地内部溶解氧水平,在湿地内部营造了一种交替的好氧和缺氧环境,可以促进硝化和反硝化作用,有效地解决了人工湿地在冬季(10 ℃以下)脱氮效率低的问题。湿地冬季运行时,曝气间歇时间为4 h的条件下,TN去除率高达59.4%,相比连续曝气方式提高20%~30%。与传统处理工艺相比,硫自养湿地的能耗节省率达到50%以上,且在一定程度上减少了CO2的排放,实现了高效脱氮和节能环保。

English Abstract

  • 目前,我国多数污水处理厂采用生物法处理污水,其二级出水中有机物和SS可达标排放,但氨氮和总氮(TN)含量却较高[1-4]。随着国家和地方环保标准的日益提高,对脱氮也提出了更高的要求,提高脱氮效率已成为污水处理领域备受关注的热点问题。人工湿地作为一种生态处理技术,具有抗冲击负荷能力强、对BOD和SS去除率高、出水水质稳定、工艺流程简单和运行成本低等优点,此外,其对氮的去除效果显著优于传统微生物处理技术[5-7],已被广泛应用于各类废水的深度处理过程中。但是,该技术在实际应用中也存在着一些问题。王博[8]发现,人工湿地在冬季低温条件下硝化反硝化作用受到抑制,使得脱氮效率明显低于适温条件,且该结果被多位研究者[8-14]证实。近年来,有研究指出硫自养反硝化技术强化人工湿地可以有效提高冬季低温条件下的脱氮效率[15-18],为该问题的解决提供了新的思路。但硫自养反硝化人工湿地技术多采用连续曝气方式,造成湿地内高溶解氧环境,从而抑制了反硝化过程,进而影响氨氮和总氮的去除[19-21]。此外,过度的曝气还会造成能源的浪费和碳源的损耗,不利于低碳源污水的处理[22],因此,故曝气方式的优化会直接影响硫自养反硝化人工湿地对氮的去除效果[23-26]

    针对以上问题,本研究重点探讨了硫自养人工湿地技术在低温条件下不同曝气条件对COD和TN去除效果的影响,分析了湿地系统溶解氧、pH的变化情况,并对系统硫平衡和能耗情况进行了分析计算,以期为一体化湿地处理装置的升级研发提供参考。

  • 波形潜流人工湿地装置由壁厚为10 mm的PVC板材制作而成,主体尺寸为B×L×H=200 mm×300 mm×800 mm。装置具有独特的结构流态系统(下流/上流),分为独立的A室和B室,其宽度比为1∶2,中间用PVC板隔开,底部连通,污水由A室上方表面布水,自上向下流动,从下方洞口进入B室,再向上流动,由B室上方表面收集排出,流态为波形潜流。表层预留有100 mm的配水区和超高保护区。基质表层上方50 mm处安装圆形穿孔布水管(DN20,45°交错开孔,孔径10 mm,孔距10 mm),保证装置进水布水均匀;距底部50 mm处设置曝气管,借助空气泵往湿地内部供氧。整个装置沿A室和B室的不同高度分别设置取水样口,自填料顶部起,每隔200 mm设置1个水样口,共设8个,并与橡胶管连通,用止水夹封住。本研究所述沿程实验以B室底端取样点为沿程起点,出水端取样点为终点。实验装置见图1

    A室[27-29]装填粒径为1~2 mm的石英砂,装填高度为600 mm;B室从上到下依次装填高度为100 mm的石英砂、高度为100 mm(体积比1∶1,粒径2~3 mm和20~50 mm)的硫磺和石灰石、高度为400 mm的石英砂;底部孔洞高为100 mm,装置底部铺有与孔洞等高的碎石[15]。硫磺在自养反硝化过程中提供电子和硫源,用于富集硫自养反硝化细菌(主要为脱氮硫杆菌);石灰石的作用在于:1)提供碱度;2)提供CO23HCO3无机碳源;3)去除水中总磷。装置的整体填料填充情况见图2,本实验未种植任何植物,以避免植物根系对脱氮作用的影响。

    实验用水由潜污泵就近抽水并通过管道输送至高位水箱,4组装置附近设置恒位配水箱(B×L×H=0.4 m×0.4 m×0.6 m),水箱上设置溢流管使配水箱始终保持一定的水位,保证装置进水的水力负荷恒定。屋顶上的高位水箱与配水箱通过一根配水管路连接成整体,当高位水箱水位超过固定水位时,通过虹吸现象完成由高位水箱向配水箱供水。同时,4组装置的进水使用4套独立的管道系统,并均在进口处设置阀门控制流量。装置的整体系统如图3所示。

    实验装置系统进水取自华中科技大学校内湖溪河中部。水体来自排污渠,无排污点,流速与污染特征较为典型,水质变化范围较小,各项水质指标平均值见表1

  • 本实验进出水的监测指标包括DO、pH、COD、NH+4-N、NO3-N、NO2-N、SO24及TN,DO采用上海雷磁HACH溶解氧仪测定,COD采用重铬酸钾微波消解法测定,NH+4-N采用水杨酸-次氯酸盐光度法测定,NO2-N采用N-(1-萘基)-乙二胺光度法测定,NO3-N采用麝香草酚分光光度法测定,SO24采用铬酸钡分光光度法测定,TN采用碱性过硫酸钾消解紫外分光光度法测定。

  • 2017年2月15日启动驯化装置,实验用水体氮磷充足,营养物质丰富,菌体种类多。反应器在无外加碳源、无优势菌体接种、无成熟活性污泥引入的条件下,保持一定的水力负荷,连续进水,实现动态自然挂膜。稳定运行阶段分为3个阶段:阶段1(启动阶段)的水力负荷为0.8 m3·(m2·d)−1;阶段2和阶段3的水力负荷分别为0.5 m3·(m2·d)−1和1.0 m3·(m2·d)−1,装置连续进水运行,其中湿地1#和湿地2#分别以气水比16∶1和8∶1进行连续曝气,而湿地3#和湿地4#未曝气。湿地表面积为0.06 m2,进水流量为0.05 m3·d−1,装置均未种植物,以避免植物根系对脱氮过程的影响。装置运行2个月后稳定,反应器成功挂膜,该阶段先探究水力负荷、曝气量以及温度对装置运行效果的影响。启动阶段,前期平均水温11.5 ℃,随后升高为(20±2) ℃,后期逐渐上升,最高温度为(30±2) ℃。该阶段总体出水COD均低于50 mg·L−1,COD去除率分别稳定在(46±3)%和(50±2)%,初步达到一级A出水标准,在适温条件下,水力负荷越低,对应脱氮效率越高,COD去除与曝气气水比具有相关性。

    本实验于2017年10月26日开始低温间歇曝气监测。在启动运行阶段实验结论的基础上,低温间歇实验在水力负荷q=0.5 m3·(m2·d)−1,低温(−5~10 ℃)条件下进行。以24 h为全周期,将4组反应器的曝气条件改为:1#人工湿地,仍以1∶16的气水比两端连续曝气;2#反应器则将曝气时间和停曝时间均增加到12 h,并保持曝气量一致;3#反应器的曝气和停曝时间为4 h交互运行,整体曝气量0.4 L·min−1;4#反应器作为未曝气参照组。

  • 对不同曝气工况下的出水COD进行监测分析,其去除率变化如图4所示。由此可见,在相同的运行周期中,COD去除率随着曝气时间的增加逐渐升高。随后对稳定状态的反应器进行沿程COD的测定,对应的去除率如图5所示。可以看出,连续曝气系统出水COD去除率显著高于间歇曝气和未曝气系统,连续曝气、间歇曝气12 h和4 h和未曝气系统的COD的平均去除率分别为43.1%、34.3%、29.5%和10%。研究证明,曝气量与COD去除率有较大的相关性,人工曝气可有效地提高湿地内部DO含量,大大增强有机物降解相关微生物的活性,从而提高湿地COD去除率。

  • 1)对TN的去除效果。整个脱氮过程主要源于生物脱氮(包含氨化反应、硝化反应和反硝化反应)反应,同时湿地中存在着基质的吸附作用及氨氮挥发、沉淀等作用。微生物脱氮需要利用的细菌(如氨化菌细菌、硝化细菌、亚硝化细菌)是好氧细菌,而反硝化菌通常是兼性菌,这意味着湿地内部溶解氧环境直接影响脱氮效果[30]

    不同曝气量系统对TN的去除效果如图6所示。在低温环境下,曝气运行的TN去除率相较未曝气明显提高至少18.8%。连续曝气、间歇曝气4 h和间歇曝气12 h的TN去除率分别为27.3%、59.4%和50.3%,其中间歇曝气4 h工况下提升效果最明显,表明间歇曝气运行策略极大地提高了潜流人工湿地TN的去除率。当污水经过硫磺/石灰石段时,TN去除率均明显上升,在对应工况下分别提高2.7%、6.3%和12.4%。这是因为,脱氮过程主要依赖硝化与反硝化过程,在低温和溶解氧较高的环境下,反硝化作用受到抑制[31],导致处理效果下降。硫自养反硝化菌群对低温的耐受性较高,且间歇曝气方式使得湿地内部形成好氧和缺氧区域交替分布,而曝气与停曝时间比例决定着湿地内部该状态的时间长度,对处理效果造成影响。

  • 2)氮形式的转化。已有研究[32-33]表明,曝气与停曝时间比例不仅对反硝化反应有较大的影响,而且还对氨化与硝化作用有一定的影响。图7显示了整个实验运行期间各湿地系统沿程NH+4-N、NO3-N和NO2-N的去除率。

    图7(a)所示,间歇曝气氨化和硝化反应更加充分,这是因为当曝气时间短于反应器的水力停留时间时,污水在湿地内部可充分实现好氧的反应,形成大量的硝酸根,随后在缺氧条件下,进行异养与硫自养反硝化反应。而随着曝气时间的增加,如图7(b)所示,曝气时间和停曝时间均为12 h,这使得当湿地处于曝气状态时,经过好氧细菌处理的污水流入湿地后端,在一定程度上抑制了反硝化反应,而切换至停止曝气状态时,大量硝酸根开始进行反硝化反应,部分污水始终得不到曝气或者处于缺氧状态。如图7(c)所示,连续曝气的湿地内部溶解氧充足,导致出现硝酸根累积现象。无论曝气工况如何,硫自养人工湿地均不会出现亚硝酸根的累积。

  • 溶解氧和pH的变化间接显示了硝化和反硝化的转化过程。图8为不同曝气方式运行条件下溶解氧和pH变化情况。图8(a)图8(b)中溶解氧含量偏高是因为取样时间恰好运行在曝气阶段,污水进入湿地后因为大气复氧,使得DO浓度在沿程比例为0.1处附近会有所增高。湿地在净化过程中消耗了氧气,沿程DO总体呈现递减的趋势。而在缺氧的情况下,兼性厌氧细菌积极发挥作用,而好氧菌受缺氧的影响不能充分发挥作用,导致耗氧速率降低,所以在湿地后段DO水略有升高。而有曝气情况下,DO浓度会在沿程比例0.1~0.4阶段上升,再递减。这结果与以往的研究结果[34-35]一致。pH的上升与下降指示着硝化反应和自养/异养反硝化反应的进行。然而石灰石的缓冲作用非常有限,因此,进水pH过低或者过高都会对反硝化的彻底性产生较大的影响。图8中均可以观察到进水端污水pH下降和经过硫磺/石灰石段后又再次下降的现象。而在图8(a)中,位于沿程比例0.3处清晰可见pH逐渐上升的过程,这是由于湿地内部异养反硝化反应消耗了H+。在不同的曝气工况下,出水pH均保持为7.0~7.5。

  • 硫自养反硝化作用在将硫磺氧化成硫酸根的同时,利用无机碳源(如CO2HCO3),以硝酸根为电子受体还原成氮气。硫磺的作用是提供硫源,用于富集硫自养反硝化细菌(主要为脱氮硫杆菌),反应[15]见式(1)。由此可见,硫酸根的产生往往伴随着硝酸根浓度的降低。

    经过硫酸/石灰石段,硝酸根浓度的下降和硫酸根对应浓度的升高证实硫自养反硝化反应的发生。理论上[36],每去除1 g NO3-N会对应生成7.54 g SO24,各反应器的SO24生成量与其NO3-N去除量均线性相关。图9给出了不同曝气工况下硝酸根的浓度变化情况。

    实验运行期间,在硫自养人工湿地沿程比例0.6处开始存在硫自养反硝化反应,在经过沿程比例0.75处,硝酸根浓度下降明显,同时,曝气方式对出水NO3-N浓度有一定的影响。在连续曝气工况下,NO3-N去除效果不理想,出水平均浓度在5.3 mg·L−1左右,而间歇曝气12 h和4 h,出水NO3-N的浓度分别为3.9 mg·L−1和2.1 mg·L−1。在整个脱氮过程中,异养反硝化和硫自养反硝化产生协同作用,然而其相应的作用区域界限往往难以区分。传统湿地水中溶解氧不足限制了硝化作用,内部NO3-N的沿程浓度均较低,出水硝酸根浓度仅为2.5 mg·L−1左右。

    有研究[36]表明,经过硫自养反硝化反应后产生的大量硫酸根在缺氧且存在少量有机碳源的环境里,硫酸根含量会减少。反应如式(2)所示。

    在启动运行阶段,不同曝气工况下的出水硫酸根浓度如图10所示。曝气越充足,出水硫酸根浓度反而越高,这说明硫磺段存在其他硫细菌消耗硫源,须在后期对菌种筛选培养来进一步确定排硫硫杆菌等的可能数量。

  • 传统的活性污泥为达到理想的去除效果,会增加剩余污泥的回流和硝化液的内回流,这会大大增强能耗。人工湿地污水处理系统能源来源广泛、耗能较低。在工程上[14, 35, 37],相较传统工艺,SBR处理工艺能使整体系统电耗下降0.08 kWh·m−3。在相似的日处理量下,将SBR工艺、垂直潜流人工湿地和硫自养人工湿地达到相同去除率的处理工艺的能耗进行对比分析。人工湿地平均水力停留时间按照式(3)计算。

    式中:tHRT为水力停留时间,h;V为湿地有效体积,m3Q为进水流量,m3·h−1。所得平均水力停留时间为7 h。

    2种湿地运行全年的能源消耗按照COD去除计算,结果见表2。由此可知,在对比分析中,垂直潜流人工湿地进水COD较低,使其单位COD去除耗能较高,单位污水耗能较低,但其COD和TN去除率低于硫自养人工湿地,说明硫自养人工湿地有效提高了出水水质。硫自养湿地TN去除率高于SBR和垂直潜流人工湿地,说明硫自养人工湿地更利于实现高效脱氮,使出水中的氮达到更高的水质要求。硫自养湿地COD去除率略低于SBR,但达到相同的去除效果时,其能源消耗仅为SBR工艺的50%左右。然而SBR对电能的依赖性较强,对于湿地而言,若利用间歇曝气方式或使用新能源技术,能源节省率即可达50%以上。

  • 对于硫自养人工湿地处理来说,利用无机碳源(CO23、CO2等)代替了有机碳源,节省了系统运行成本,并在一定程度上减少了碳排放。若将该技术运用于某污水厂二沉池出水处理,该污水处理厂处理量为60 000 m3·d−1,且出水TN为20 mg·L−1, 其中NO3-N含量为16.8 mg·L−1,仅达到一级B处理。若将其提升至一级A,理论上,需要消耗81.5 kg·d−1硫磺和18.2 kg·d−1石灰石,若使用外投有机碳源的形式,考虑工程中脱氮效率须达到95%以上,通常每去除1 mg NO3-N,需投加3 mg甲醇[38-41]。本案例则需额外投加90 kg·d−1甲醇。而这些甲醇(CH3OH)通过微生物内源呼吸,反应如式(4)所示。

    在实际应用中,增加124 kg·d−1 CO2的排放,增大了系统的运行成本的同时,也增加了碳的排放,并且甲醇对人类有害,对其保管也将存在风险。湿地基质表面往往会种植相应的湿地植物,植物通过光合作用也对系统CO2减排方面贡献了力量,因而硫自养湿地的运行可初步实现碳“零排放”的要求。

  • 1)在低温(−5~10 ℃)条件下,硫磺提供硫源,富集硫自养反硝化细菌,提高反硝化作用。间歇曝气运行方式可显著提升湿地内部的溶解氧浓度,极大地促进了湿地内部的硝化反应过程,有效地解决了人工湿地在冬季低温(−5~10 ℃)脱氮效率低的问题。

    2)出水pH基本保持在7.0~7.5,适宜相关微生物的生长和繁殖。石灰石提供的碱度足以消耗硫自养反硝化反应中产生的大量H+以维持系统出水pH。

    3)曝气方式对出水NO3浓度有一定的影响,溶解氧不足会抑制硝化作用。但曝气过足,会促进硫磺/石灰石段的杂菌生长,使出水硫酸根浓度变高。在实际运行中,过度曝气会造成硫源的浪费以及出水硫酸根超标的危险。

    4)硫自养间歇人工湿地在脱氮效率高于垂直流人工湿地时可更好地提高脱氮效率。相比同等去除效果的SBR处理工艺,硫自养间歇人工湿地利用无机碳源(CO33、CO2等)代替有机碳源,系统单位COD去除能耗可减少50%,可节省系统运行成本,减少了碳排放量,工艺简单,不需要复杂的硝化液回流措施,可降低基建费用,该技术工程化经济性较高。

参考文献 (41)

返回顶部

目录

/

返回文章
返回