-
人工湿地(constructed wetlands,CWs)被认为是处理废水的低成本技术,其较低的建设和运营成本、便利的管理和高效的去除氮磷效率适合低浓度水平污染物的去除,能够较好地削减水体的污染物负荷,同时还具有良好的生态效应[1-2],已经广泛应用于污水处理。在人工湿地中,氮磷平衡是分析氮磷去除途径和评估各自去除贡献的常用方法[3]。人工湿地氮磷的去除途径主要是通过植物、基质和微生物的物理、化学和生物作用完成的[4]。WU等[5]发现,表面流人工湿地中植物同化吸收氮、磷的能力分别为8.46%~30.98%和0.46%~2.13%。LU等[6]指出,表面流人工湿地基质填料的吸附、截留、交换等作用去除水中磷的比例大约为26%。ZHANG等[7]发现,微生物的硝化反硝化作用是人工湿地去除废水中TN(66.9%~80.5%)的主要途径。
人工湿地植物不仅具有美学价值,还显示出对污染物的去除作用,它通过提供理想的附着位点来调节微生物群落,且根系分泌物可加速异养反硝化细菌的生长,增加微生物群落丰富度和多样性[8],有利于水中氮磷去除。DU等[9]发现,植物的种植增加了微生物的丰富度和生物多样性;同时,相关的反硝化属假单胞菌、不动杆菌、根瘤菌、芽孢杆菌和红假单胞菌丰度的增加,增强了微生物对氮的去除作用。HE等[10]发现,γ-变形菌、α-变形菌和β-变形菌是人工湿地基质中的主要细菌,并在减少硝酸盐和亚硝酸盐的功能上发挥了重要作用。DU等[11]发现,植物的种植改变了垂直流人工湿地微生物的组成,并指出假单胞菌属可能是微生物除磷吸附的主要参与者。但是,现有的研究缺少了人工湿地污染物去除途径和微生物群落相结合的分析,以及植物的种植对微生物群落以及微生物氮磷净化作用的影响分析。因此,为了系统地研究人工湿地净化机制和人工湿地处理效果与微生物群落之间的关系,采用5种人工湿地系统种植不同植被用于处理低浓度污水,通过人工湿地的氮磷平衡和高通量测序相结合的手段,研究种植不同植物的人工湿地系统氮磷净化效果差异、污染物的去除途径以及微生物群落的变化,并探讨了植物的种植对微生物群落和微生物氮磷净化作用的影响,以期为提高人工湿地对污水的净化效果提供参考。
种植不同植物的表面流人工湿地净化效果和微生物群落差异分析
Purification effects and microbial community differences of the surface-flow constructed wetlands with different vegetation plantation
-
摘要: 为了解植物种类对表面流人工湿地的净化效果的影响及其与微生物群落的关系,研究了4种植物条件下表面流人工湿地的氮磷平衡以及微生物群落结构。结果表明,各组人工湿地对氨氮(45.53%~80.95%)、总氮(53.67%~80.30%)和总磷(32.97%~55.77%)都有较好的处理效果,种植植物的人工湿地比未种植的人工湿地具有更高的氨氮、总氮和总磷去除效果,其中黄菖蒲组对氮的去除效果最好,美人蕉组对磷的去除效果最好。在表面流人工湿地中,微生物作用(34.84%~45.44%)是人工湿地氮去除的主要途径,基质吸附(20.90%~23.91%)是人工湿地磷去除的主要途径,但是种植植物的人工湿地的氮磷通过微生物去除的量更高。高通量测序分析表明,相较于未种植植物的人工湿地,种植植物的人工湿地显示出更高的微生物丰富度、多样性和更高的脱氮除磷功能微生物的丰度。假单胞菌属、不动杆菌属、芽孢杆菌属和硝化螺菌属是人工湿地中主要的脱氮菌属,也是种植植物的人工湿地高生物脱氮的原因。假单胞菌属和不动杆菌属丰度增加是种植植物的人工湿地高生物除磷的原因。Abstract: In order to investigate the effects of vegetation species on the purification performance of surface-flow constructed wetlands(CWs) and its relationship with microbial community in CWs, the balance of nitrogen and phosphorus, as well as the microbial community in CWs with four types of vegetation plantation were studied. The results revealed that each CW had a good performance on
${\rm{NH}}_4^{+} $ -N, TN and TP removal, and the corresponding removal rates were 45.53%~80.95%, 53.67%~80.30% and 32.97%~55.77%, respectively. Moreover, CWs with vegetation plantation generally presented a higher${\rm{NH}}_4^{+} $ -N, TN and TP removal rate than CWs without vegetation plantation, of which Irispseudacorus planted CWs achieved the best nitrogen removal, and Canna glauca planted CWs achieved the best phosphorus removal. In CWs, the main nitrogen removal was dependent on the microbial process with removal rate of 31.34%~45.44%, and the main phosphorus removal was ascribed to the substrate adsorption with removal rate of 20.90%~23.91%. However, CWs with vegetation plantation showed higher nitrogen and phosphorus removal rates through microbes than CWs without vegetation plantation. The high-throughput sequencing analysis indicated that CWs with vegetation plantation showed higher microbial abundant, biodiversity and higher microbial abundance of denitrification and dephosphorization than CWs without vegetation plantation. In addition, Pseudomonas, Acinetobacter, Bacillus and Nitrospira were the main genus of denitrification and responsible for the high biological denitrification effect in CWs with vegetation plantation, and the increase in the abundance of Pseudomonas and Acinetobacter were responsible for the high biological dephosphorization effect. -
表 1 人工湿地进出水的参数
Table 1. Characteristics of the influent and effluent in CWs
组别 pH DO/(mg·L−1) 水温T/℃ 进水 7.73±0.25 5.12±1.22 27.63±2.31 Ⅰ组出水 7.11±0.31 2.48±0.32 27.42±2.68 Ⅱ组出水 7.22±0.13 2.74±0.45 27.11±2.12 Ⅲ组出水 7.29±0.23 2.93±0.34 26.66±2.78 Ⅳ组出水 7.36±0.18 3.32±0.51 26.87±2.43 Ⅴ组出水 7.33±0.29 3.12±0.41 27.23±2.92 表 2 人工湿地微生物多样性和丰富度
Table 2. Microbial diversity and richness in samples of CWs
组别 测序数量/个 多样性指数 丰富度指数 覆盖率 Shannon Simpson Sobs Ace Chao Ⅰ 37 707 4.99 0.024 5 1 441 1 770.18 1 754.28 0.985 Ⅱ 42 513 6.38 0.003 3 1 736 2 004.13 2 063.44 0.986 Ⅲ 74 434 6.00 0.006 7 1 594 1 747.37 1 772.99 0.994 Ⅳ 38 033 5.79 0.011 0 1 464 1 754.82 1 806.11 0.982 Ⅴ 49 548 5.59 0.020 8 1 478 1 672.91 1 705.38 0.991 -
[1] FAULWETTER J L, GAGNON V, SUNDBERG C, et al. Microbial processes influencing performance of treatment wetlands: A review[J]. Ecological Engineering, 2009, 35(6): 987-1004. doi: 10.1016/j.ecoleng.2008.12.030 [2] 曾毅夫, 邱敬贤, 刘君, 等. 人工湿地水处理技术研究进展[J]. 湿地科学与管理, 2018, 14(3): 62-65. doi: 10.3969/j.issn.1673-3290.2018.03.15 [3] WU H L, WANG X Z, HE X J, et al. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland[J]. Science of the Total Environment, 2017, 598: 697-703. doi: 10.1016/j.scitotenv.2017.04.150 [4] THOMAS R, GOUGH R, FREEMAN C. Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product[J]. Ecological Engineering, 2017, 106: 415-422. doi: 10.1016/j.ecoleng.2017.06.015 [5] WU H M, ZHANG J A, LI P Z, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J]. Ecological Engineering, 2011, 37(4): 560-568. doi: 10.1016/j.ecoleng.2010.11.020 [6] LU S Y, WU F C, LU Y, et al. Phosphorus removal from agricultural runoff by constructed wetland[J]. Ecological Engineering, 2009, 35(3): 402-409. doi: 10.1016/j.ecoleng.2008.10.002 [7] ZHANG S N, XIAO R L, LIU F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J]. Ecological Engineering, 2016, 97: 363-369. doi: 10.1016/j.ecoleng.2016.10.021 [8] CHUNG A K C, WU Y, TAM N F Y, et al. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater[J]. Ecological Engineering, 2008, 32(1): 81-89. doi: 10.1016/j.ecoleng.2007.09.007 [9] DU L, TRINH X T, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2017, 249: 644-651. [10] HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1-8. doi: 10.1016/j.biortech.2016.04.088 [11] DU L, CHEN Q R, LIU P P, et al. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by integrated vertical-flow constructed wetlands (IVCWs)[J]. Bioresource Technology, 2017, 243: 204-211. doi: 10.1016/j.biortech.2017.06.092 [12] GARCÍA-GONZÁLEZ M C, VANOTTI M B, SZOGI A A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration[J]. Journal of Environmental Management, 2015, 152: 19-26. [13] ZHANG J, SUN H M, WANG W G, et al. Enhancement of surface flow constructed wetlands performance at low temperature through seasonal plant collocation[J]. Bioresource Technology, 2016, 224: 222-228. [14] REWALD B, KUNZE M E, GODBOLD D L. NH4∶NO3 nutrition influence on biomass productivity and root respiration of poplar and willow clones[J]. Global Change Biology Bioenergy, 2016, 8(1): 51-58. doi: 10.1111/gcbb.2016.8.issue-1 [15] 李伟斯, 李长虹, 徐斌, 等. 人工湿地植被净化水质效果及其氮磷累积研究[J]. 水土保持研究, 2018, 25(3): 250-257. [16] 殷晓乐. 季节性植物搭配强化人工湿地净化污水效果及其作用机制研究[D]. 济南: 山东大学, 2016. [17] 郑于聪. 污染河水的人工湿地净化特性及植物作用原理研究[D]. 西安: 西安建筑科技大学, 2016. [18] 吴海明. 表面流人工湿地处理北方污染河水的长期净化效果及相关机理研究[D]. 济南: 山东大学, 2011. [19] 沈莹, 郑于聪, 王晓昌, 等. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675. [20] SRIVASTAVA J K, CHANDRA H, KALRA S J S, et al. Plant-microbe interaction in aquatic system and their role in the management of water quality: A review[J]. Applied Water Science, 2016, 7: 1-12. doi: 10.3390/app7010001 [21] 李玲丽. 复合人工湿地脱氮途径及微生物多样性研究[D]. 重庆: 重庆大学, 2015. [22] URAKAWA H, DETTMAR D L, THOMAS S. The uniqueness and biogeochemical cycling of plant root microbial communities in a floating treatment wetland[J]. Ecological Engineering, 2017, 108: 573-580. doi: 10.1016/j.ecoleng.2017.06.066 [23] WU Y H, HAN R, YANG X N, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology & Biotechnology, 2016, 100(15): 6917-6926. [24] ZHANG Y Y, DONG J D, YANG B, et al. Bacterial community structure of mangrove sediments in relation to environmental variables accessed by 16S rRNA gene-denaturing gradient gel electrophoresis fingerprinting[J]. Scientia Marina, 2009, 73(3): 487-498. doi: 10.3989/scimar.2009.73n3 [25] LI X, LI Y Y, LI Y, et al. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments[J]. Applied Microbiology and Biotechnology, 2018, 102(24): 10755-10765. doi: 10.1007/s00253-018-9426-2 [26] MIAO Y, LIAO R X, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042 [27] 房昀昊, 彭剑峰, 宋永会, 等. 高通量测序法表征潜流人工湿地中不同植物根际细菌群落特征[J]. 环境科学学报, 2018, 38(3): 911-918. [28] ZHANG X M, HUA X F, YUE X P. Comparison of bacterial community characteristics between complete and shortcut denitrification systems for quinoline degradation[J]. Applied Microbiology & Biotechnology, 2016, 101(4): 1-11. [29] LI C, REN H Q, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156 [30] LI L Z, HE C G, JI G D, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073 [31] ZHONG F, WU J, DAI Y R, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1499-1512. doi: 10.1007/s00253-014-6063-2 [32] LIU H, LU Q, WANG Q, et al. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal[J]. Bioresource Technology, 2017, 235: 59-69. doi: 10.1016/j.biortech.2017.03.111 [33] MING X, LIU W J, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J]. Environmental Science & Pollution Research, 2016, 23(11): 10990-11001. [34] BELLINI M I, GUTIÉRREZ L, TARLERA S, et al. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification[J]. Systematic and Applied Microbiology, 2013, 36(7): 505-516. doi: 10.1016/j.syapm.2013.07.001 [35] KANG Y, ZHANG J, XIE H J, et al. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex[J]. Bioresource Technology, 2017, 224: 157-165. doi: 10.1016/j.biortech.2016.11.035 [36] DALAHMEH S S, JÖNSSON H, HYLANDER L D, et al. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater[J]. Water Research, 2014, 54(4): 21-32. [37] JIA F, LAI C, CHEN L, et al. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater[J]. Chemosphere, 2017, 185: 1-10. doi: 10.1016/j.chemosphere.2017.06.132 [38] YAO S, NI J R, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2[J]. Bioresource Technology, 2013, 139(13): 80-86. [39] STREICHAN M, GOLECKI J R, SCHON G. Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal[J]. FEMS Microbiology Letters, 1990, 73(2): 113-124. doi: 10.1111/fml.1990.73.issue-2 [40] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528: 504-509. doi: 10.1038/nature16461 [41] 雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5): 1373-1381.