-
石油是一种由饱和烃、芳香烃、胶质及沥青质等组成的复合体,故石油污染具有环境体系复杂、波及范围广、治理困难、修复周期长、产生危害大的特征。石油烃污染物进入土壤后会改变土壤的理化性质,威胁地下水安全,致使动植物死亡,甚至危害人类健康[1-3]。石油在加工和运输过程中产生的三泥、罐底泥、船舱底泥等油泥污染物中主要成分都是石油污染土壤和泥沙[4-6],我国每年因石油造成的污染土壤近1×105 t,所以石油烃污染土壤的修复治理已迫在眉睫。
目前,污染土壤的修复方法主要分为物理修复、化学修复和生物修复。常见的修复方法有土壤洗涤法[7-8]、化学氧化法[9-10]、电动修复法[11]、生物强化法[12-13]、机械洗脱法等。其中,机械洗脱法以其修复周期短、修复彻底而被广泛应用于土壤修复中。机械洗脱法的前期研究主要集中在超声、微波、喷射反应[14-17]等方面,这些技术均通过外加场强的方法进行污染物的脱附,故普遍存在高能耗的弊端[18]。目前,有研究[19]表明颗粒运动可以提高其中污染物的脱附效果。因此,在低能耗下,依靠特殊物理结构调控土壤颗粒自身运动状态强化污染物脱附,对于石油烃污染土壤的修复具有重要意义。
本研究将使用CFD软件Fluent(UDF)对石油烃污染土壤颗粒的不同运动状态进行模拟,得到颗粒运动状态与脱附效果之间的关系,并基于此结果,设计一种管式涡流结构,满足颗粒的运动状态,探究在不同结构参数下,颗粒运动状态的变化及石油烃脱附效果。
石油烃污染土壤颗粒运动状态与脱附关系数值模拟
CFD numerical simulation of the relationship between particle movement and desorption of petroleum hydro-carbon contaminated soil
-
摘要: 针对土壤中石油烃污染的脱附,采用计算模拟方法对污染土壤颗粒的运动状态与脱附关系进行了研究。结果表明,颗粒中污染物的脱附效果与其运动状态有关,脱附效果由低至高排序为颗粒静止<直线运动<螺旋运动,且颗粒做螺旋运动对污染物的脱附较其他运动状态更为均匀;螺旋运动的脱附效果与旋向无关,但与运动圈数有关,单位时间内螺旋运动的圈数越多,颗粒的脱附效果越好。基于上述结果,设计了一种管式涡流结构以期实现颗粒的螺旋运动,实现了土壤颗粒中石油烃污染物的强化脱附。利用Fluent模拟了不同管式涡流结构的流体流动形态及颗粒运动轨迹,发现螺旋叶片的旋向能够调控颗粒的运动旋向,螺旋叶片的导程能够调控颗粒的运动圈数。Abstract: In this study, the CFD software Fluent was used to study the relationship between the motion status and desorption efficiency of petroleum hydrocarbon contaminated soil particles. The results showed that the pollutant desorption efficiency was related to particle motion status, and the desorption efficiency ranked in ascending order as stationary<linear motion<spiral motion. The desorption effect created by spiral motion status was more evenly around the particle than that by other motions. The desorption effect of particles in spiral motion was independent of the direction of rotation but related to the number of revolving circles. The more the number of turns of spiral motion, the better the desorption effect of particles. Based on these findings, a tube with spiral fans was designed to create the spiral motion of particles to achieve the enhanced desorption of pollutants. Fluent was used to simulate the fluid flow patterns and particle motions trajectory of different spiral structures. It was found that the rotating direction and the lead of the spiral fans could regulate the direction and number of revolving circle of particles, respectively.
-
Key words:
- petroleum hydrocarbons /
- soil particles /
- motion state /
- desorption /
- numerical simulation
-
表 1 湍流模型比较
Table 1. Comparison of turbulence models
湍流模型 适用范围 标准k-ε模型 完全湍流的流动过程模拟,计算量小 重整化群k-ε两方程模型 强流线弯曲、漩涡和旋转等,计算量大 可实现型k-ε模型 旋转均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动等,计算量大 表 2 管式涡流结构形式
Table 2. Tube vortex structure
序号 叶片旋向 叶片导程/mm 1 左旋 37.5 2 右旋 37.5 3 左旋 18.75 -
[1] BUZMAKOV S, EGOROVA D, GATINA E. Effects of crude oil contamination on soils of the Ural region[J]. Journal of Soils and Sediments, 2019, 19(1): 38-48. doi: 10.1007/s11368-018-2025-0 [2] KHODARY S M, NEGM A M, TAWFIK A. Geotechnical properties of the soils contaminated with oils, landfill leachate, and fertilizers[J]. Arabian Journal of Geosciences, 2018, 11(2): 13-29. doi: 10.1007/s12517-017-3372-7 [3] ZHU H, GAO Y, LI D. Germination of grass species in soil affected by crude oil contamination[J]. International Journal of Phytoremediation, 2018, 20(6): 567-573. doi: 10.1080/15226514.2017.1405376 [4] MULLAKAEV M S, VEXLER G B, MULLAKAEV R M. Sonochemical technology for separating oil sludge and oil-contaminated soil[J]. Petroleum Science and Technology, 2018, 36(8): 604-608. doi: 10.1080/10916466.2018.1440297 [5] EGAZAR'YANTS S, VINOKUROV V, VUTOLKINA A, et al. Oil sludge treatment processes[J]. Chemistry and Technology of Fuels and Oils, 2015, 51(5): 506-515. doi: 10.1007/s10553-015-0632-7 [6] LIU C, ZHANG Y, SUN S, et al. Oil recovery from tank bottom sludge using rhamnolipids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 14-20. doi: 10.1016/j.petrol.2018.06.031 [7] GITIPOUR S, HEDAYATI M, MADADIAN E. Soil washing for reduction of aromatic and aliphatic contaminants in soil[J]. Clean-Soil Air Water, 2015, 43(10): 1419-1425. doi: 10.1002/clen.v43.10 [8] LI G, GUO S, HU J. The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil[J]. Chemical Engineering Journal, 2016, 286: 191-197. doi: 10.1016/j.cej.2015.10.006 [9] WU H, SUN L, WANG H, et al. Persulfate oxidation for the remediation of petroleum hydrocarbon-contaminated soils[J]. Polish Journal of Environmental Studies, 2016, 25(2): 851-857. doi: 10.15244/pjoes/60857 [10] CHEN K, CHANG Y, CHIOU W. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: A comparison study[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(6): 1877-1888. doi: 10.1002/jctb.2016.91.issue-6 [11] 李婷婷, 郭书海, 王加宁, 等. 周期切换电极极性对电动-微生物修复石油污染土壤的影响[J]. 环境工程, 2016, 34(1): 159-163. [12] LOMZA P, POSZYTEK K, SKLODOWSKA A, et al. Evaluation of bioremediation of soil highly contaminated by petroleum hydrocarbons[J]. New Biotechnology, 2016, 33: 141. [13] 张秀霞, 滕芝, 吴佳东. 生物强化修复石油污染土壤[J]. 环境工程学报, 2013, 7(4): 1573-1577. [14] FENG D, LORENZEN L, ALDRICH C, et al. Ex situ diesel contaminated soil washing with mechanical methods[J]. Minerals Engineering, 2001, 14(9): 1093-1100. doi: 10.1016/S0892-6875(01)00114-5 [15] SON Y, CHA J, LIM M, et al. Comparison of ultrasonic and conventional mechanical soil-washing processes for diesel-contaminated sand[J]. Industrial and Engineering Chemistry Research, 2011, 50(4): 2400-2407. doi: 10.1021/ie1016688 [16] 刘珑, 王殿生, 曾秋孙, 等. 微波修复石油污染土壤升温特性影响因素的实验研究[J]. 环境工程学报, 2011, 5(4): 898-902. [17] GAO Y, DING R, WU S, et al. Influence of ultrasonic waves on the removal of different oil components from oily sludge[J]. Environmental Technology, 2015, 36(14): 1771-1775. doi: 10.1080/09593330.2015.1010594 [18] 孙荣江, 侯峰, 丁焱梁, 等. 重金属污染土壤旋流洗脱设备的设计及性能评估[J]. 环境工程学报, 2018, 12(4): 1208-1217. doi: 10.12030/j.cjee.201710036 [19] HUANG Y, LI J, ZHANG Y, et al. High-speed particle rotation for coating oil removal by hydrocyclone[J]. Separation and Purification Technology, 2017, 177: 263-271. doi: 10.1016/j.seppur.2016.12.001 [20] 竺嘉斌. 变径式微混器结构参数的优化研究[D]. 上海: 华东理工大学, 2018.