[1] |
FAULWETTER J L, GAGNON V, SUNDBERG C, et al. Microbial processes influencing performance of treatment wetlands: A review[J]. Ecological Engineering, 2009, 35(6): 987-1004. doi: 10.1016/j.ecoleng.2008.12.030
|
[2] |
曾毅夫, 邱敬贤, 刘君, 等. 人工湿地水处理技术研究进展[J]. 湿地科学与管理, 2018, 14(3): 62-65. doi: 10.3969/j.issn.1673-3290.2018.03.15
|
[3] |
WU H L, WANG X Z, HE X J, et al. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland[J]. Science of the Total Environment, 2017, 598: 697-703. doi: 10.1016/j.scitotenv.2017.04.150
|
[4] |
THOMAS R, GOUGH R, FREEMAN C. Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product[J]. Ecological Engineering, 2017, 106: 415-422. doi: 10.1016/j.ecoleng.2017.06.015
|
[5] |
WU H M, ZHANG J A, LI P Z, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J]. Ecological Engineering, 2011, 37(4): 560-568. doi: 10.1016/j.ecoleng.2010.11.020
|
[6] |
LU S Y, WU F C, LU Y, et al. Phosphorus removal from agricultural runoff by constructed wetland[J]. Ecological Engineering, 2009, 35(3): 402-409. doi: 10.1016/j.ecoleng.2008.10.002
|
[7] |
ZHANG S N, XIAO R L, LIU F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J]. Ecological Engineering, 2016, 97: 363-369. doi: 10.1016/j.ecoleng.2016.10.021
|
[8] |
CHUNG A K C, WU Y, TAM N F Y, et al. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater[J]. Ecological Engineering, 2008, 32(1): 81-89. doi: 10.1016/j.ecoleng.2007.09.007
|
[9] |
DU L, TRINH X T, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2017, 249: 644-651.
|
[10] |
HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1-8. doi: 10.1016/j.biortech.2016.04.088
|
[11] |
DU L, CHEN Q R, LIU P P, et al. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by integrated vertical-flow constructed wetlands (IVCWs)[J]. Bioresource Technology, 2017, 243: 204-211. doi: 10.1016/j.biortech.2017.06.092
|
[12] |
GARCÍA-GONZÁLEZ M C, VANOTTI M B, SZOGI A A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration[J]. Journal of Environmental Management, 2015, 152: 19-26.
|
[13] |
ZHANG J, SUN H M, WANG W G, et al. Enhancement of surface flow constructed wetlands performance at low temperature through seasonal plant collocation[J]. Bioresource Technology, 2016, 224: 222-228.
|
[14] |
REWALD B, KUNZE M E, GODBOLD D L. NH4∶NO3 nutrition influence on biomass productivity and root respiration of poplar and willow clones[J]. Global Change Biology Bioenergy, 2016, 8(1): 51-58. doi: 10.1111/gcbb.2016.8.issue-1
|
[15] |
李伟斯, 李长虹, 徐斌, 等. 人工湿地植被净化水质效果及其氮磷累积研究[J]. 水土保持研究, 2018, 25(3): 250-257.
|
[16] |
殷晓乐. 季节性植物搭配强化人工湿地净化污水效果及其作用机制研究[D]. 济南: 山东大学, 2016.
|
[17] |
郑于聪. 污染河水的人工湿地净化特性及植物作用原理研究[D]. 西安: 西安建筑科技大学, 2016.
|
[18] |
吴海明. 表面流人工湿地处理北方污染河水的长期净化效果及相关机理研究[D]. 济南: 山东大学, 2011.
|
[19] |
沈莹, 郑于聪, 王晓昌, 等. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675.
|
[20] |
SRIVASTAVA J K, CHANDRA H, KALRA S J S, et al. Plant-microbe interaction in aquatic system and their role in the management of water quality: A review[J]. Applied Water Science, 2016, 7: 1-12. doi: 10.3390/app7010001
|
[21] |
李玲丽. 复合人工湿地脱氮途径及微生物多样性研究[D]. 重庆: 重庆大学, 2015.
|
[22] |
URAKAWA H, DETTMAR D L, THOMAS S. The uniqueness and biogeochemical cycling of plant root microbial communities in a floating treatment wetland[J]. Ecological Engineering, 2017, 108: 573-580. doi: 10.1016/j.ecoleng.2017.06.066
|
[23] |
WU Y H, HAN R, YANG X N, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology & Biotechnology, 2016, 100(15): 6917-6926.
|
[24] |
ZHANG Y Y, DONG J D, YANG B, et al. Bacterial community structure of mangrove sediments in relation to environmental variables accessed by 16S rRNA gene-denaturing gradient gel electrophoresis fingerprinting[J]. Scientia Marina, 2009, 73(3): 487-498. doi: 10.3989/scimar.2009.73n3
|
[25] |
LI X, LI Y Y, LI Y, et al. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments[J]. Applied Microbiology and Biotechnology, 2018, 102(24): 10755-10765. doi: 10.1007/s00253-018-9426-2
|
[26] |
MIAO Y, LIAO R X, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042
|
[27] |
房昀昊, 彭剑峰, 宋永会, 等. 高通量测序法表征潜流人工湿地中不同植物根际细菌群落特征[J]. 环境科学学报, 2018, 38(3): 911-918.
|
[28] |
ZHANG X M, HUA X F, YUE X P. Comparison of bacterial community characteristics between complete and shortcut denitrification systems for quinoline degradation[J]. Applied Microbiology & Biotechnology, 2016, 101(4): 1-11.
|
[29] |
LI C, REN H Q, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156
|
[30] |
LI L Z, HE C G, JI G D, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073
|
[31] |
ZHONG F, WU J, DAI Y R, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1499-1512. doi: 10.1007/s00253-014-6063-2
|
[32] |
LIU H, LU Q, WANG Q, et al. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal[J]. Bioresource Technology, 2017, 235: 59-69. doi: 10.1016/j.biortech.2017.03.111
|
[33] |
MING X, LIU W J, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J]. Environmental Science & Pollution Research, 2016, 23(11): 10990-11001.
|
[34] |
BELLINI M I, GUTIÉRREZ L, TARLERA S, et al. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification[J]. Systematic and Applied Microbiology, 2013, 36(7): 505-516. doi: 10.1016/j.syapm.2013.07.001
|
[35] |
KANG Y, ZHANG J, XIE H J, et al. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex[J]. Bioresource Technology, 2017, 224: 157-165. doi: 10.1016/j.biortech.2016.11.035
|
[36] |
DALAHMEH S S, JÖNSSON H, HYLANDER L D, et al. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater[J]. Water Research, 2014, 54(4): 21-32.
|
[37] |
JIA F, LAI C, CHEN L, et al. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater[J]. Chemosphere, 2017, 185: 1-10. doi: 10.1016/j.chemosphere.2017.06.132
|
[38] |
YAO S, NI J R, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2[J]. Bioresource Technology, 2013, 139(13): 80-86.
|
[39] |
STREICHAN M, GOLECKI J R, SCHON G. Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal[J]. FEMS Microbiology Letters, 1990, 73(2): 113-124. doi: 10.1111/fml.1990.73.issue-2
|
[40] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528: 504-509. doi: 10.1038/nature16461
|
[41] |
雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5): 1373-1381.
|