-
近年来,由于资源短缺和环境污染,利用生物质废物制取液体燃料和化学品已成为一个重要的研究方向。热解是一种在缺氧或无氧环境、中等温度(一般为400~600 ℃)条件下处理生物质废物以获取生物油的技术手段[1-3]。但是,生物油组分复杂,含有大量酸、醛、酮等不稳定的含氧化合物,不但不能直接应用,而且在储存、运输等后续处理过程中易于变质[4-5]。
在生物质热解过程中加入催化剂是一种调控生物油产率和品质的重要方法,合适催化剂的应用对特定反应具有选择性促进效果,从而可以获得更多的目标产物[6-9]。闵凡飞等[10]通过添加CaO对小麦和玉米秸秆的催化热解实验发现,CaO改变了生物质的热解反应历程,使热解挥发分在不同温度区间重新分配。ILIOPOULOU等[11]制备了Co/HZSM-5催化剂用于热解木质纤维素制备芳香烃,结果表明,过渡金属Co负载有助于增强HZSM-5的催化效果。研究人员利用过渡金属氧化物催化热解生物质,主要可得到富含烷氧基酚类化合物的生物油。MA等[12]以碱木素为原料、多种过渡金属氧化物为催化剂的热解实验发现,Co3O4可以显著增加生物油产率,增加生物油中甲氧基苯与甲氧基酚的含量。值得注意的是,利用热解方法将生物质废物转化为生物油,会导致多环芳烃(PAHs)的生成。由于PAHs对人体危害巨大[13],美国国家环保局在2004年就将16种最常见的PAHs列为优先控制的有机污染物[14]。然而,由于这16种PAHs污染物在分子结构的差别,导致它们的毒性相差甚远。因此,深度解析生物油中16种PAHs污染物的分布特征对了解生物油后处理及应用过程的环境健康风险具有重要指导意义。
与此同时,生物质热解过程的工艺参数是影响高品质生物油有效制备的重要因素。近年来,有研究[15]表明,除热解反应的温度、时间等过程因素之外,不同的热解气氛对生物油产率和特性也会带来一定影响。MANTE等[16]对杨木催化热解的研究发现,CO2气氛减少焦炭的产量并增加有机液体产率。ZHANG等[17]研究表明,CO2作为热解气氛会得到比传统N2气氛更为稳定的生物油,他们采用流化床反应器在多种气氛下对玉米芯进行了热解实验,结果表明,相较于传统N2气氛,CO2气氛使生物油中易于受热聚合的甲氧基酚类化合物含量降低。JINDAROM等[18]比较了2种气氛对生物油组分的影响,结果表明,生物油中单环芳烃组分的含量没有明显变化,而多环芳烃污染物含量在CO2气氛下相对较低。
本研究以水曲柳木屑为原料、Co3O4为催化剂,研究了不同热解温度对生物油组分、热解残渣微观形貌以及生物油中16种PAHs污染物分布特征的影响规律,并利用响应曲面法对热解气氛的CO2/N2比例、物料停留时间、反应温度等过程因素进行优化,以获得最大的生物油产率。
生物质废物催化热解特性及多因素优化实验
Catalytic pyrolysis characteristics and multi-factor optimization experiments of biomass
-
摘要: 生物质废物催化热解所得生物油中富含多环芳烃(PAHs)污染物,但其分布特征及相应影响因素尚缺乏深入探讨。以Co3O4为催化剂,采用管式炉反应器在不同温度下热解水曲柳木屑制备生物油,并分析其化学组分和16种PAHs污染物分布特征。结果表明,生物油中以酚类化合物为主,而PAHs污染物的种类与含量均随反应温度的升高而增加,PAHs总含量从389.60 μg·g-1(400 ℃)攀升至105 435.12 μg·g-1(700 ℃)。同时,将CO2引入热解气氛,利用Box-Benhnken曲面响应法对催化热解过程的多个工艺因素进行优化。结果显示,在热解温度为511 ℃、停留时间为12.7 min、热解气氛的CO2/N2比例为88/12时,生物油产率达到最大值,约45%。研究结果对生物质废物的高效、低污染资源化利用具有参考价值。Abstract: Bio-oil obtained from biomass pyrolysis contains polycyclic aromatic hydrocarbons (PAHs) pollutants, which are teratogenic, carcinogenic, and mutagenic to humans. As a result, it causes a concern about the potential risk for environmental and human health during its subsequent processing. In this study, Co3O4 was used as a catalyst to perform saw dust pyrolysis for bio-oil production in a tube furnace reactor. The chemical composition of the bio-oil and the distribution of 16 kinds of PAHs were analyzed. The results showed that the bio-oil mainly consisted of phenolic compounds; the species and content of PAHs in bio-oil increased with the rise of pyrolysis temperature, and the amount of the total PAHs sharply increased from 389.60 μg·g-1 at 400 ℃ to 105 435.12 μg·g-1 at 700 ℃. At the same time, CO2 was induced into the pyrolysis atmosphere, an optimization of multiple pyrolysis factors for the bio-oil yield was performed by using Box-Benhnken response surface method, and it was found that the highest yield of bio-oil was achieved with a value of about 45% at the pyrolysis temperature of 511 ℃, the residence time of 12.7 min and the CO2/N2 ratio of 88/12 in the reaction atmosphere. This study will provide a reference for the high effective and low pollution resource recycling of biomass waste.
-
表 1 多环芳烃的毒性当量因子(FTEF)
Table 1. Toxic equivalency factors (FTEF) of PAHs
名称 简写 FTEF 萘 Nap 0.001 苊 Acp 0.001 二氢苊 Ace 0.001 芴 Flu 0.001 菲 PhA 0.001 蒽 Ant 0.010 荧蒽 FluA 0.001 芘 Pyr 0.001 苯并[a]蒽 BaA 0.100 䓛 Chr 0.010 苯并[b]荧蒽 BbF 0.100 苯并[k]荧蒽 BkF 0.100 苯并[a]芘 BaP 1.000 茚并[1, 2, 3-c, d]芘 lcP 0.100 二苯并[a, h]蒽 DbA 1.000 苯并[g, h, i]芘 BgP 0.010 表 2 实验自变量因素及水平
Table 2. Experimental independent variable factors and levels
序号 (A) N2比例/% (B)反应时间/min (C) 反应温度/℃ 1 0 10 400 2 50 15 500 3 100 20 600 表 3 曲面响应多因素优化实验设计
Table 3. Design for experiments of multi-factor by surface response method
序号 (A)
N2比例/%(B)
反应时间/min(C)
反应温度/℃1 100 15 600 2 100 15 400 3 0 15 400 4 50 15 500 5 50 10 400 6 0 20 500 7 0 15 600 8 50 20 400 9 50 15 500 10 50 15 500 11 100 20 500 12 50 15 500 13 100 10 500 14 0 10 500 15 50 15 500 16 50 20 600 17 50 10 600 表 4 曲面响应模型的方差分析
Table 4. Variance analysis of surface response model
项目 平方和 自由度 均方 F值 P值 模型 173.32 9 19.26 8.13 0.005 7* A 44.41 1 44.41 18.76 0.003 4* B 24.20 1 24.20 10.22 0.015 1* C 1.26 1 1.26 0.53 0.489 5 AB 0.26 1 0.26 0.11 0.751 3 AC 0.62 1 0.62 0.26 0.624 0 BC 9.03 1 9.03 3.81 0.091 8 A2 10.76 1 10.76 4.54 0.070 5 B2 22.45 1 22.45 9.48 0.017 8* C2 51.66 1 51.66 21.82 0.002 3* 残差 16.57 7 2.37 失拟项 1.56 3 0.52 0.14 0.931 6 误差 15.01 4 3.75 总和 189.89 16 注:* P < 0.05,显著;2) A、B和C分别代表N2/CO2比例、物料停留时间以及反应温度。 -
[1] 黄博, 张傑, 常风民, 等.餐厨垃圾分选有机废物热解动力学特性分析[J].环境工程学报, 2017, 11(11): 220-226. [2] 林顺洪, 李伟, 柏继松, 等. TG-FTIR研究生物质成型燃料热解与燃烧特性[J].环境工程学报, 2017, 11(11): 312-317. [3] 王攀, 于宏兵, 薛旭方, 等.废弃植物中药渣的热解特性及动力学研究[J].环境工程学报, 2010, 4(9): 2115-2119. [4] 秦丽元, 孙焱, 蒋恩臣, 等. NiO/HZSM-5催化改性生物油模拟物研究[J].农业机械学报, 2014, 45(8): 206-217. [5] 秦丽元, 贾月雯, 魏晓莉, 等.生物油重质油醇类添加剂提质研究[J].农业机械学报, 2017, 48(11): 324-329. doi: 10.6041/j.issn.1000-1298.2017.11.039 [6] LIU C J, WANG H M, KARIM A M. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. doi: 10.1039/C3CS60414D [7] DICKERSON T, SORIA J. Catalytic fast pyrolysis: A review[J]. Energies, 2013, 6(1): 514-538. doi: 10.3390/en6010514 [8] STOCKER M. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte Chemie: International Edition, 2008, 47(48): 9200-9211. doi: 10.1002/anie.200801476 [9] ASADIERAGHI M, DAUD W M A W, ABBAS H F. Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: A review[J]. RSC Advances, 2015, 5(28): 22234-22255. doi: 10.1039/C5RA00762C [10] 闵凡飞, 张明旭, 陈清如, 等.新鲜生物质催化热解特性的研究[J].林产化学与工业, 2008, 28(3): 28-34. doi: 10.3321/j.issn:0253-2417.2008.03.006 [11] ILIOPOULOU E F, STEFANIDIS S, KALOGIANNIS K, et al. Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours[J]. Green Chemistry, 2014, 16(2): 662-674. doi: 10.1039/C3GC41575A [12] MA Z Q, CUSTODIS V, BOKHOVEN J A. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis Science & Technology, 2014, 4(3): 766-772. [13] LIU X, ZHANG G, JONES K C, et al. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS) from the northern slope of Nanling Mountains, South China[J]. Atmospheric Environment, 2005, 39(30): 5490-5499. doi: 10.1016/j.atmosenv.2005.05.048 [14] ZHANG Y X, TAO S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004[J]. Atmospheric Environment, 2009, 43(4): 812-819. doi: 10.1016/j.atmosenv.2008.10.050 [15] KWON E E, EUI C J, MARCO J C, et al. Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass[J]. Environmental Science & Technology, 2013, 47(18): 10541-10547. [16] MANTE O D, AGBLEVOR F A, OYAMA S T. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass[J]. Bioresource Technology, 2012, 111: 482-490. doi: 10.1016/j.biortech.2012.02.015 [17] ZHANG H Y, XIAO R, WANG D H, et al. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresource Technology, 2011, 102(5): 4258-4264. doi: 10.1016/j.biortech.2010.12.075 [18] JINDAROM C, MEEYOO V, RIRKSOMBOON T. Thermochemical decomposition of sewage sludge CO2 and N2 atmosphere[J]. Chemosphere, 2007, 67(8): 1477-1484. doi: 10.1016/j.chemosphere.2006.12.066 [19] 陆强, 朱锡锋, 李文志, 等.生物质快速热解产物在线催化提质研究[J].科学通报, 2009, 54(9): 1139-1146. [20] 郑云武, 杨晓琴, 王霏, 等.生物质催化裂解制备芳烃化合物的研究进展[J].林产化学与工业, 2015, 35(5): 149-158. doi: 10.3969/j.issn.0253-2417.2015.05.024 [21] 王玉珏, 苏露, 李翔宇, 等.生物质组分在催化快速热解中的相互影响[J].清华大学学报(自然科学版), 2013, 53(4): 531-536. [22] BLANCO P H, WU C F, ONWUDILI J A, et al. Characterization of tar from the pyrolysis/gasification of refuse derived fuel: Influence of process parameters and catalysis[J]. Energy & Fuels, 2012, 26(4): 2107-2115. [23] 王芸, 邵珊珊, 张会岩, 等.生物质模化物催化热解制取烯烃和芳香烃[J].化工学报, 2015, 66(8): 3022-3028. [24] DAI Q J, JIANG X G, JIANG Y F. Formation of PAHs during the pyrolysis of dry sewage sludge[J]. Fuel, 2014, 130: 92-99. doi: 10.1016/j.fuel.2014.04.017 [25] SHARMA R K, HAJALIGOL M R. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2003, 66(1): 123-144. [26] NISBET I C, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X [27] 陈温福, 张伟明, 孟军.农用生物炭研究进展与前景[J].中国农业科学, 2013, 46(16): 3325-3333. [28] 丁文川, 曾晓岚, 王永芳, 等.生物炭载体的表面特征和挂膜性能研究[J].中国环境科学, 2011, 31(9): 1451-1455. [29] CHEN W H, LIN B J. Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres[J]. Energy, 2016, 94: 569-578. doi: 10.1016/j.energy.2015.11.027 [30] MANTE O D, AGBLEVOR F A, OYAMA S T, et al. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass[J]. Bioresource Technology, 2012, 111: 482-490. doi: 10.1016/j.biortech.2012.02.015