-
近年来, 燃煤电厂由于其排放的NOx对于当地空气状况和居民健康安全的严重危害而受到广泛的关注[1]。利用NH3做为还原剂来选择性催化还原NOx(SCR)已经被证明是一种行之有效的脱硝技术[2-3]。本技术的核心在于催化剂的选择, V2O5-WO3/TiO2催化剂被广泛应用于燃煤电厂中NOx的去除。但是, 燃煤烟气中含有多种有毒物质, 如SO2、碱金属、碱土金属及砷氧化物等, 这些物质会导致SCR催化剂NOx去除率的降低以及使用寿命的缩短。因此, 催化剂脱硝效率会随着使用寿命的延长而逐渐降低, 直到催化剂最终由于活性过低而废弃[4]。直接更换新鲜催化剂不仅费用昂贵, 而且更换下来的失活催化剂由于V、W等有毒元素的存在而给其处理处置带来了很大困难。
选择对失活SCR催化剂进行处理以恢复其活性成为了今后符合经济效应和环境效益的优良选择。SHANG等[5]利用去离子水洗和硫酸清洗结合的方式对失活商业SCR催化剂进行再生。经过再生之后, 催化剂中S元素和Fe元素含量均明显降低, 再生催化剂脱硝性能可以达到90%以上。白伟等[6]探究了化学清洗对商业SCR催化剂的再生效果, 发现酸溶液去除失活催化剂表面的Fe2O3、K2O、Na2O离子效果良好, 经过清洗再生的失活催化剂脱硝效率可以达到新鲜催化剂的89.13%, 说明化学清洗能有效恢复失活催化剂性能。樊恩亚等[7]采用等体积浸渍法制备了一系列Mn-Ce-Ox复合氧化物脱硝催化剂, 并利用热处理方法对其进行再生, 200 ℃时再生催化剂脱硝性能能恢复到新鲜催化剂的90%以上。上述研究表明, 现有的SCR催化剂活性恢复方法已经可以取得较好效果。但由于其都是离线进行的, 工艺流程一般遵循拆卸—活性恢复—重新组装的步骤进行, 在此过程中, 需要消耗大量的人力物力, 还会产生大量的有毒有害废水, 同时也不利于燃煤电厂的连续运转。
催化剂在线维护, 是一种在线恢复失活SCR催化剂活性的方法, 在此过程中, 催化剂在SCR装置中直接进行活化, 不需拆卸。泡沫清洗由于其耗水量少、清洗效率高[8]的优点在工业上有广泛应用, 本研究拟通过将再生过程中所用到的清洗液和活性添加剂转化为泡沫来对失活SCR催化剂进行在线维护, 并对在线维护效果以及实验中所涉及到的溶液最佳浓度参数进行探究, 以期达到失活催化剂再利用、节省人力物力资源和减少再生废水的产生量的目的。
失活商业SCR催化剂在线维护技术
On-line maintenance technology of deactivated commercial SCR catalyst
-
摘要: 商业SCR催化剂在工业运行过程中由于其复杂的工况条件存在容易中毒、失活的问题, 故利用在线维护技术对其进行活性恢复具有巨大的商业发展前景。为了探究泡沫清洗技术对商业SCR失活催化剂进行在线维护方案的可行性, 采用一系列表征手段对在线维护前、后的失活SCR脱硝催化剂进行了表征分析, 包括SEM、EDS、XRD、BET和XPS等, 并对在线维护最佳的溶液浓度参数进行了探究。研究发现:当稀硫酸浓度为0.4 mol·L-1, 微孔渗透液质量分数为2%, 活性添加剂质量分数为3%, 在线维护效果最优; 经过在线维护之后, 催化剂团聚现象得到明显改善, 碱金属中毒现象得到缓解, 催化剂氧化性能和表面酸度增强, 催化剂活性因而得到恢复, 其最佳脱硝效率可达92%, 具备良好的工业应用潜力。Abstract: Due to the complicated working conditions for commercial SCR catalysts applied in bio-fuel plants, they must meet the poisoning and deactivation problems during the process of industrial operation. Therefore, their activation recovery with viable online maintenance solutions will have a great commercial potential. In order to identify the feasibility of the foam cleaning technology on the on-line maintenance of deactivated commercial SCR catalysts, a series of techniques, including SEM, EDS, XRD, BET and XPS, were used to characterize the deactivated commercial SCR catalysts before and after on-line maintenance. The optimum concentration parameters of cleaning solution for on-line maintenance were also investigated. The results showed that the optimum on-line maintenance effect happened at the dilute sulfuric acid concentration of 0.4 mg·L-1, the mass concentration for microporous permeate of 2%, and the mass concentration for active additive of 3%. After on-line maintenance, the agglomeration and alkali poisoning of the catalysts were significantly alleviated. The surface acidic sites and oxidation property of catalyst were enhanced, which contributed to the activity recovery of deactivated catalyst. The optimum denitration efficiency reached up to 92%, which showed a good industrial application potential.
-
Key words:
- denitrification /
- SCR catalyst /
- on-line maintenance /
- optimal conditions
-
表 1 催化剂EDS能谱分析结果
Table 1. Results of EDS energy spectra analysis of the catalysts
催化剂种类 元素质量分数/% O Na Al Si S K Ca Ti V W Fe 新鲜催化剂 40.65 — — — 2.74 — 1.04 49.84 0.44 5.30 — 失活催化剂 53.96 1.59 5.31 7.91 5.87 0.47 3.13 19.17 0.42 — 2.15 在线维护催化剂 42.50 — 1.32 — 4.65 — 0.71 42.27 0.43 3.43 — 注:—表示催化剂中元素含量低于检测限度。 -
[1] NAGEL G, STAFOGGIA M, PEDERSEN M, et al. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the european study of cohorts for air pollution effects (ESCAPE)[J]. International Journal of Cancer, 2018, 134: 1632-1643. [2] LI X, LI Y, DENG S, et al. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Communications, 2013, 40: 47-50. doi: 10.1016/j.catcom.2013.05.024 [3] FAN D Q, WANG J, YU T, et al. Catalytic deactivation mechanism research over Cu/SAPO-34 catalysts for NH3-SCR (I): The impact of 950 ℃ hydrothermal aging time[J]. Chemical Engineering Science, 2018, 176: 285-293. doi: 10.1016/j.ces.2017.10.032 [4] PENG Y, LI J, SI W, et al. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic[J]. Applied Catalysis B: Environmental, 2015, 168: 195-202. [5] SHANG X, HU G, CHI H, et al. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. Journal of Industrial & Engineering Chemistry, 2012, 18: 513-519. [6] 白伟, 赵冬梅, 肖雨亭.失活SCR脱硝催化剂化学清洗再生技术研究[J].中国电力, 2015, 48(4): 6-10. [7] 樊恩亚, 卫平波, 眭国荣, 等.锰铈脱硝催化剂的制备及其再生性能研究[J].环境科学与技术, 2012, 35(9): 40-44. doi: 10.3969/j.issn.1003-6504.2012.09.010 [8] 王玉雷, 陈炳耀, 李乐, 等.环保气雾型水基泡沫清洗剂的研究[J].日用化学品科学, 2010, 33(11): 19-23. doi: 10.3969/j.issn.1006-7264.2010.11.006 [9] YU Y, WANG J, CHEN J, et al. Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements[J]. Journal of Environmental Sciences, 2016, 47: 100-108. doi: 10.1016/j.jes.2015.12.039 [10] 黄力, 陈志平, 王虎, 等.钒钛系SCR脱硝催化剂砷中毒研究进展[J].能源环境保护, 2016, 30(4): 5-8. doi: 10.3969/j.issn.1006-8759.2016.04.002 [11] 周春玲, 朱趁安, 章文荣, 等.泡沫驱用起泡剂的筛选及性能评价[J].石油化工应用, 2017, 36(12): 49-52. doi: 10.3969/j.issn.1673-5285.2017.12.012 [12] UDDIN M A, SHIMIZU K, ISHIBE K, et al. Characteristics of the low temperature SCR of NOx with NH3 over TiO2[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309: 178-183. doi: 10.1016/j.molcata.2009.06.002 [13] BHARDWAJ R, CHEN X H, VIDIC R. Impact of fly ash composition on mercury speciation in simulated flue gas[J]. Air Repair, 2009, 59: 1331-1338. [14] YOUN S, SONG I, LEE H, et al. Effect of pore structure of TiO2 on the SO2 poisoning over V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2017, 303: 19-24. [15] CHANG H Z, SHI C N, LI M G, et al. The effect of cations (NH4+, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides[J]. Chinese Journal of Catalysis, 2018, 39: 710-717. doi: 10.1016/S1872-2067(18)63011-6 [16] ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental, 2005, 60: 253-264. doi: 10.1016/j.apcatb.2005.03.010 [17] ZONG L, DONG F, ZHANG G, et al. Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: Effect of the valence of V on the catalytic performance[J]. Catalysis Surveys from Asia, 2017, 21: 103-113. doi: 10.1007/s10563-017-9229-y [18] 唐云, 杨凤林, 刘冰. γ-Al2O3负载Mn基催化剂低温催化臭氧氧化NO[J].环境工程学报, 2018, 12(9): 2540-2547. [19] CHEN W, LI Z, HU F, et al. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst[J]. Applied Surface Science, 2018, 439: 75-81. doi: 10.1016/j.apsusc.2018.01.057 [20] XIONG Z, WU C, HU Q, et al. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst[J]. Chemical Engineering Journal, 2012, 286: 459-466. [21] QING M X, SU S, WANG L L, et al. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3[J]. Chemical Engineering Journal, 2019, 361: 1215-1224. doi: 10.1016/j.cej.2018.12.165 [22] CHEN C, CAO Y, LIU S, et al. SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury[J]. Fuel Processing Technology, 2018, 181: 268-278. doi: 10.1016/j.fuproc.2018.09.025 [23] ZHU M, LAI J K, TUMULURI U, et al. Nature of active sites and surface intermediates during SCR of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. Journal of the American Chemical Society, 2017, 139: 15624-15627. doi: 10.1021/jacs.7b09646