-
垃圾焚烧发电是实现垃圾资源化、减量化、无害化处理的有效途径, 在焚烧前的堆酵过程会产生大量的垃圾焚烧渗沥液, 其有机物浓度高(COD 50 000~70 000 mg·L-1)[1], 氨氮浓度高(NH4+ 700~1 500 mg·L-1), 由于其BOD5/COD > 0.3(0.5~0.7), 一般采用“厌氧+好氧”的组合处理工艺对其进行处理[2-5]。垃圾焚烧渗沥液经厌氧生物处理后, 有机物浓度大幅降低, 氨氮浓度却随着含氮有机物的降解而升高(NH4+ 800~1 800 mg·L-1)[1], 导致C/N降低。利用传统硝化-反硝化对垃圾焚烧渗沥液厌氧出水进行脱氮处理, 需要外加碳源[6], 且高浓度的NH4+导致较高浓度的游离氨(FA), 会抑制微生物活性, 影响处理效果[7-8]。
厌氧氨氧化菌在厌氧环境中以亚硝氮为电子受体将氨氧化成氮气[9]。厌氧氨氧化工艺相对于硝化-反硝化工艺, 具有所需曝气量少、无需碳源、剩余污泥产量低、温室气体排放少等优点[10], 对高浓度氨氮耐受耐力强[11], 适合用于处理低C/N且氨氮浓度高的废水, 如垃圾填埋场渗沥液[12-13]、畜禽养殖废水[14-15]、污泥消化液[16]等。但厌氧氨氧化菌生长缓慢, 倍增时间长(7~22 d), 导致反应器启动时间较长, 且厌氧氨氧化菌对废水中有机物、盐度、重金属等物质敏感, 活性易受到影响, 从而降低对废水的处理效果。生物电化学技术凭借其高效、灵活的特性, 被应用到传统的废水的脱氮处理过程中[17-19], 相关功能微生物能在电极表面生长和富集, 微生物活性提高, 增强处理效率。但大部分研究都以人工配水为主, 氨氮和有机物的负荷较低。很少有研究报道生物电化学技术与厌氧氨氧化工艺联合处理类似垃圾渗沥液的高氨氮、高有机物浓度的废水。
本研究采用厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水, 研究外加电势对厌氧氨氧化工艺脱氮及有机物去除的影响, 监测生物电极生物膜胞外聚合物的变化, 对比分析生物膜中Cyt-c、Nir、HZS和HDH厌氧氨氧化菌种功能酶活性的变化, 探究外加电势对厌氧氨氧化工艺对脱氮及有机物去除的强化机理, 为电极强化厌氧氨氧化工艺在实际工程中的应用提供参考。
外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水
Enhanced biotreatment of partial nitrified incineration leachate by applying electric potential in anammox system
-
摘要: 利用外加电势强化厌氧氨氧化处理垃圾焚烧渗沥液短程硝化出水, 研究外加电势对系统脱氮及有机物去除的影响。结果表明, 在外加电势为0.06 V时, TN的去除率由43.2%提升至71.3%, COD的去除率由12.1%提升至24.4%。渗沥液中分子质量大于20 kDa的有机物在外加电势的作用下被部分降解成分子质量相对较小的有机物。外加电势也会刺激微生物产生更多的EPS且能提高其中PN/PS的比值, 这有利于厌氧氨氧化菌在电极表面的生长和富集, 增强微生物的活性。电极生物膜中细胞色素c(Cyt-c)、亚硝酸盐还原酶(Nir)、肼合成酶(HZS)和肼脱氢酶(HDH)4种厌氧氨氧化菌的功能酶的活性也在外加电势的作用下得到了提升。Abstract: The electric potential (EP) was applied in anammox system to enhance its biotreatment of partial nitrified leachate from municipal solid waste (MSW) plant. The effects of applied EP on total nitrogen (TN) and organic matter removal were investigated. The results showed that at 0.06 V electric potential applied in the anammox system, TN removal and COD efficiencies increased from 43.2% to 71.3% and 12.1% to 24.4%, respectively. Under the effect of applied EP, the macromolecules with molecular weight > 20 kDa in the leachate were degraded into low molecular weighted organics. EP applied could stimulate the microbes, promote the extracellular polymeric substances (EPS) production, and improve the protein (PN)/polysaccharide (PS) ratio, which was conducive to anammox bacteria growth and enrichment on the electrode surface and microbial activity enhancement. Moreover, EP application also strengthened functional enzyme activity of anammox bacteria, such as the Cyt-c in electrode biofilm, Nir, HZS and HDH, and accelerated the rate of electron transfer.
-
表 1 垃圾渗沥液水质特征
Table 1. Characteristics of leachate from MSW incineration plant
水样 COD/(mg·L-1) NH4+/(mg·L-1) NO2-/(mg·L-1) TN/(mg·L-1) pH 垃圾渗沥液 55 000~70 000 600~1 000 0~25 1 200~1 800 4.2~6.1 短程硝化出水 180~1 180 90~520 110~680 210~1 300 6.5~7.2 -
[1] 叶杰旭.城市生活垃圾焚烧厂渗沥液生物处理工艺及其效能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10213-1013035369.htm [2] LEI Y, WEI L, LIU T, et al. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant[J]. Chemical Engineering Journal, 2018, 348: 992-999. doi: 10.1016/j.cej.2018.05.060 [3] LIU J, ZHANG H, ZHANG P, et al. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: Pollutant removal erformances and microbial community[J]. Bioresource Technology, 2017, 243: 738-746. doi: 10.1016/j.biortech.2017.07.002 [4] MIAO L, WANG S, LI B, et al. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate[J]. Bioresource Technology, 2015, 192: 354-360. doi: 10.1016/j.biortech.2015.05.013 [5] YE J X, MU Y J, CHENG X, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor[J]. Bioresource Technology, 2011, 102(9): 5498-5503. doi: 10.1016/j.biortech.2011.01.001 [6] BERNAT K, IRENA W B. Carbon source in aerobic denitrification[J]. Biochemical Engineering Journal, 2007, 36(2): 116-122. [7] 刘钊, 姜枫, 党岩, 等.氨氮对A/O2 MBBR处理垃圾焚烧渗沥液厌氧出水的影响[J].环境工程学报, 2016, 10(8): 3986-3992. [8] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 [9] MULDER A, VAN DE GRAAF A A, ROBERTSON L, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. doi: 10.1111/fem.1995.16.issue-3 [10] 王亚宜, 黎力, 马骁, 等.厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J].环境科学学报, 2014, 34(6):1362-1374. [11] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 [12] WU L, LI Z, ZHAO C, et al. A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate[J]. Science of the Total Environment, 2018, 633: 745-751. doi: 10.1016/j.scitotenv.2018.03.213 [13] LI X, YUAN Y, WANG F, et al. Highly efficient of nitrogen removal from mature landfill leachate using a combined DN-PN-Anammox process with a dual recycling system[J]. Bioresource Technology, 2018, 265: 357-364. doi: 10.1016/j.biortech.2018.06.023 [14] YAMAMOTO T, WAKAMATSU S, QIAO S, et al. Partial nitritation and anammox of a livestock manure digester liquor and analysis of its microbial community[J]. Bioresource Technology, 2011, 102(3): 2342-2347. doi: 10.1016/j.biortech.2010.10.091 [15] SUTO R, ISHIMOTO C, CHIKYU M, et al. Anammox biofilm in activated sludge swine wastewater treatment plants[J]. Chemosphere, 2017, 167: 300-307. doi: 10.1016/j.chemosphere.2016.09.121 [16] WANG G, XU X, ZHOU L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. doi: 10.1016/j.biortech.2017.02.125 [17] LI L, DONG Y, QIAN G, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen[J]. Bioresource Technology, 2018, 258: 168-176. doi: 10.1016/j.biortech.2018.02.121 [18] SRIKANTH S, KUMAR M, PURI S. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry[J]. Bioresource Technology, 2018, 265: 506-518. doi: 10.1016/j.biortech.2018.02.059 [19] LIU H, YAN Q, SHEN W. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES)[J]. Bioresource Technology, 2014, 171: 187-192. doi: 10.1016/j.biortech.2014.08.056 [20] JIANG F, QIU B, SUN D Z. Advanced degradation of refractory pollutants in incineration leachate by UV/peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 349: 338-346. doi: 10.1016/j.cej.2018.05.062 [21] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [22] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Bhemistry, 1951, 193: 265-275. [23] STROUS M, HEIJNEN J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340 [24] WAKI M, TOKUTOMI T, YOKOYAMA H, et al. Nitrogen removal from animal waste treatment water by anammox enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780. doi: 10.1016/j.biortech.2006.09.031 [25] JETTEN M S, STROUS M, VAN DE PAS-SCHOONEN K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. doi: 10.1111/j.1574-6976.1998.tb00379.x [26] ISAKA K, SUMINO T, TSUNEDA S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J]. Journal of Bioscience and Bioengineering, 2007, 103(5): 486-490. doi: 10.1263/jbb.103.486