-
汞是一种可以在生物体内和食物链中永久积累的有毒物质[1], 如果排放到大气中, 对环境与人类会造成很大危害。在汞排放的所有来源中, 燃煤汞排放已经成为最主要的人为汞污染源[2]。燃煤烟气汞主要有3种形态, 即氧化态汞(Hg2+或Hg+)、颗粒态汞(Hg(p))和气态单质汞(Hg0)[3]。其中, 氧化态汞易溶于水, 可较容易地被湿法脱硫装置吸收脱除, 颗粒态汞可以被除尘装置脱除, 但气态单质汞由于其高挥发性和难溶于水的特性, 很难被现有的污染物控制装置有效脱除[4]。因此, 燃煤烟气中气态单质汞的有效脱除是脱汞领域的一大难题。在众多燃煤汞排放控制技术中, 活性炭吸附法的研究最为广泛[5-6], 但其主要缺点是脱汞效率与汞吸附容量较低, 在实际应用中需要喷入大量活性炭, 致使脱汞成本过高[7]。因此, 脱汞效率高、吸附容量大的吸附剂日益成为国内外研究的重点。
石墨相氮化碳(g-C3N4)具类似石墨的二维层状结构, 具有良好的热稳定性和化学稳定性[8]。同时, g-C3N4具有原料来源广泛、合成方法简单、孔隙结构丰富等优点[9]。近年来, g-C3N4被广泛应用于多相催化[10]、光催化[11]等领域。不过, g-C3N4用作燃煤烟气单质汞脱除吸附剂的研究目前还比较缺乏。本研究通过一步热聚合法合成了绒毛状g-C3N4, 采用对单质汞具有较强氧化脱除能力的CuCl2对g-C3N4进行改性, 在固定床反应器中测试纯g-C3N4和CuCl2改性g-C3N4在低温条件下对单质汞的吸附脱除性能, 考察烟气组分对脱汞效率和汞吸附量的影响, 并对脱汞机理进行了探讨。
氯化铜改性石墨相氮化碳吸附剂的脱汞性能
Removal of elemental mercury by cupric chloride-modified graphitic carbon nitride
-
摘要: 针对燃煤电厂汞污染物排放控制的问题, 以尿素为前驱体, 通过直接热聚合法制得绒毛状石墨相氮化碳(g-C3N4), 并用于低温条件下吸附脱除单质汞(Hg0)。利用透射电子显微镜(TEM)、X射线衍射(XRD)、氮气吸附-脱附、X射线光电子能谱(XPS)等手段对吸附剂进行表征。结果表明:未改性g-C3N4具有良好的低温脱汞活性, 在120 ℃时其脱汞效率可达84.7%;CuCl2改性可以有效提高g-C3N4的脱汞性能, 其脱汞效率在40~200 ℃范围内均可达到97%以上; 温度对吸附剂脱汞效率的影响较小。XPS表征测试结果表明, 铜离子和共价态氯原子均参与了单质汞的吸附脱除反应, Hg0被Cu2+离子和共价态Cl原子氧化成了Hg2+离子, 再吸附于g-C3N4表面而脱除。CO2、SO2和水蒸气对吸附剂脱汞效率影响较小, 但水蒸气可提高汞吸附量。Abstract: To control the mercury emission from the coal-fired power plants, villous graphitic carbon nitride (g-C3N4) was synthesized via direct thermal polymerization of the precursor of urea, and it was used to adsorption removal of elemental mercury (Hg0) at low temperature. The sorbents were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, and X-ray photoelectron spectroscopy (XPS) techniques. The results showed that pristine g-C3N4 performs well toward Hg0 adsorption with Hg0 removal efficiency of up to 84.7% at 120 ℃. CuCl2 modification could effectively improve the Hg0 removal performance of g-C3N4, and its Hg0 removal efficiency could approach above 97% at 40~200 ℃. Temperature had a slight impact on Hg0 removal efficiency. XPS analysis indicated that both copper ions and covalent chlorine atoms participated in elemental mercury adsorption removal reaction, in which Hg0 was oxidized into Hg2+ by Cu2+ ions and covalent Cl atoms, and then Hg2+ was adsorbed on g-C3N4 surface for removal. CO2, SO2 and water vapor had slight effects on Hg0 removal efficiency, whereas water vapor could improve mercury adsorption capacity.
-
Key words:
- mercury pollution /
- coal-fired flue gas /
- graphitic carbon nitride /
- mercury adsorbent
-
表 1 纯g-C3N4和CuCl2改性g-C3N4的孔隙特性及平均孔径
Table 1. Textural properties and average pore diameter of pristine and CuCl2-modified g-C3N4
样品 BET比表面积/(m2·g-1) 总孔容/(cm3·g-1) 介孔孔容/(cm3·g-1) 平均孔径/nm g-C3N4 51 0.461 0.446 36 1CuCl2/g-C3N4 64 0.389 0.383 24 3CuCl2/g-C3N4 59 0.359 0.354 24 5CuCl2/g-C3N4 54 0.305 0.301 23 -
[1] LI H, WU C, LI Y, et al. Role of flue gas components on mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012, 243: 117-123. doi: 10.1016/j.jhazmat.2012.10.007 [2] XIE J, QU Z, YAN N, et al. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. Journal of Hazardous Materials 2013, 261: 206-213. doi: 10.1016/j.jhazmat.2013.07.027 [3] YAO H, LUO G, XU M, et al. Mercury emission and species during combustion of coal and waste[J]. Energy & Fuels, 2006, 20(5): 1946-1950. [4] LI H, WU C, LI Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B:Environmental, 2012, 111: 381-388. [5] 谭增强, 牛国平, 陈晓文, 等.椰壳碳基吸附剂的脱汞特性[J].环境工程学报, 2015, 12(9): 5992-5996. [6] SUN P, ZHANG B, ZENG X, et al. Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200: 100-106. doi: 10.1016/j.fuel.2017.03.031 [7] JAMPAIAH D, IPPOLITO S J, SABRI Y M, et al. Ceria-zirconia modified mnox catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science & Technology, 2016, 6(6): 1792-1803. [8] WANG X, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2: 1596-1606. doi: 10.1021/cs300240x [9] 王悦, 蒋权, 尚介坤, 等.介孔氮化碳材料合成的研究进展[J].物理化学学报, 2016, 32(8): 1913-1928. [10] ZHU J, WEI Y, CHEN W, et al. Graphitic carbon nitride as a metal-free catalyst for NO decomposition[J]. Chemical Communications, 2010, 46: 6965-6967. doi: 10.1039/c0cc01432j [11] XIAO J, XIE Y, NAWAZ F, et al. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants[J]. Applied Catalysis B:Environmental, 2016, 183: 417-425. doi: 10.1016/j.apcatb.2015.11.010 [12] DONG F, WU L, SUN Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21: 15171-15174. doi: 10.1039/c1jm12844b [13] 王幸宜.催化剂表征[M].上海:华东理工大学出版社, 2008. [14] LIU D, LU C, WU J. Elemental mercury adsorption by cupric chloride-modified mesoporous carbon aerogel[J]. Colloids and Interfaces, 2018, 2(4): 66. [15] LIU D, ZHOU W, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017, 194(4): 115-122. [16] REN H T, JIA S Y, WU Y, et al. Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light [J]. Industrial & Engineering Chemistry Research, 2014, 53: 17645-17653. [17] 金瑞瑞, 游继光, 张倩, 等. Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报, 2014, 30(9): 1706-1712. [18] DONG F, SUN Y, WU L, et al. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance[J]. Catalysis Science & Technology 2012, 2: 332-1335. [19] 杨丽, 石应杰, 张辰, 等. CuCl2改性材料脱除燃煤烟气中的Hg0[J].环境工程学报, 2016, 10(11): 6598-6602. doi: 10.12030/j.cjee.201509170 [20] ZHANG Q, XU L, NING P, et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014, 317: 955-961. doi: 10.1016/j.apsusc.2014.09.017 [21] YANG W, SHAN Y, DING S, et al. Gas-phase elemental mercury removal using ammonium chloride impregnated sargassum chars[J]. Environmental Technology, 2018, 1: 1-8. [22] TIAN S, WANG Z, GONG W, et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 Catalyst[J]. Journal of the American Chemical Society, 2018, 140: 11161-11164. doi: 10.1021/jacs.8b06029