[1] LI H, WU C, LI Y, et al. Role of flue gas components on mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012, 243: 117-123. doi: 10.1016/j.jhazmat.2012.10.007
[2] XIE J, QU Z, YAN N, et al. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. Journal of Hazardous Materials 2013, 261: 206-213. doi: 10.1016/j.jhazmat.2013.07.027
[3] YAO H, LUO G, XU M, et al. Mercury emission and species during combustion of coal and waste[J]. Energy & Fuels, 2006, 20(5): 1946-1950.
[4] LI H, WU C, LI Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B:Environmental, 2012, 111: 381-388.
[5] 谭增强, 牛国平, 陈晓文, 等.椰壳碳基吸附剂的脱汞特性[J].环境工程学报, 2015, 12(9): 5992-5996.
[6] SUN P, ZHANG B, ZENG X, et al. Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200: 100-106. doi: 10.1016/j.fuel.2017.03.031
[7] JAMPAIAH D, IPPOLITO S J, SABRI Y M, et al. Ceria-zirconia modified mnox catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science & Technology, 2016, 6(6): 1792-1803.
[8] WANG X, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2: 1596-1606. doi: 10.1021/cs300240x
[9] 王悦, 蒋权, 尚介坤, 等.介孔氮化碳材料合成的研究进展[J].物理化学学报, 2016, 32(8): 1913-1928.
[10] ZHU J, WEI Y, CHEN W, et al. Graphitic carbon nitride as a metal-free catalyst for NO decomposition[J]. Chemical Communications, 2010, 46: 6965-6967. doi: 10.1039/c0cc01432j
[11] XIAO J, XIE Y, NAWAZ F, et al. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants[J]. Applied Catalysis B:Environmental, 2016, 183: 417-425. doi: 10.1016/j.apcatb.2015.11.010
[12] DONG F, WU L, SUN Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21: 15171-15174. doi: 10.1039/c1jm12844b
[13] 王幸宜.催化剂表征[M].上海:华东理工大学出版社, 2008.
[14] LIU D, LU C, WU J. Elemental mercury adsorption by cupric chloride-modified mesoporous carbon aerogel[J]. Colloids and Interfaces, 2018, 2(4): 66.
[15] LIU D, ZHOU W, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017, 194(4): 115-122.
[16] REN H T, JIA S Y, WU Y, et al. Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light [J]. Industrial & Engineering Chemistry Research, 2014, 53: 17645-17653.
[17] 金瑞瑞, 游继光, 张倩, 等. Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报, 2014, 30(9): 1706-1712.
[18] DONG F, SUN Y, WU L, et al. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance[J]. Catalysis Science & Technology 2012, 2: 332-1335.
[19] 杨丽, 石应杰, 张辰, 等. CuCl2改性材料脱除燃煤烟气中的Hg0[J].环境工程学报, 2016, 10(11): 6598-6602. doi: 10.12030/j.cjee.201509170
[20] ZHANG Q, XU L, NING P, et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014, 317: 955-961. doi: 10.1016/j.apsusc.2014.09.017
[21] YANG W, SHAN Y, DING S, et al. Gas-phase elemental mercury removal using ammonium chloride impregnated sargassum chars[J]. Environmental Technology, 2018, 1: 1-8.
[22] TIAN S, WANG Z, GONG W, et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 Catalyst[J]. Journal of the American Chemical Society, 2018, 140: 11161-11164. doi: 10.1021/jacs.8b06029