-
2015年,全国工业废水排放量达199.5×108 t,而含铜废水来源广泛、排放量大,对人体健康极具危害[1]。含铜废水主要处理方式有混凝沉淀法、生物处理法、吸附法、离子交换法和膜分离技术等[2-3],都在一定程度上受技术与经济性等因素限制。特别是目前普遍采用的混凝沉淀法会产生大量含铜危废污泥,而且对于低浓度含铜废水更是难以稳定有效处理、达标排放。我国水资源和铜资源短缺形势严峻、供需矛盾突出[4],加大对含铜废水的资源化研究符合循环经济的理念,有助于缓解资源紧张和减轻环境污染。
络合-超滤耦合技术,拥有分离效率高、能耗低、操作简便、无相变、分离产物易于回收、无二次污染等诸多优点,是重金属废水资源化的首选技术之一[5-6]。络合-超滤耦合技术理念源于SPIRAKOV等[7]通过耦合水溶性聚合物与超滤膜实现对溶液微量重金属含量的测定。关于络合-超滤耦合技术应用于重金属废水资源化利用的研究较少[8-9],而该技术可行性关键在于水溶性聚合物对重金属离子的络合效果、超滤膜对络合物的筛分效率以及对膜污染的防控。近年来,无机陶瓷膜较有机滤膜更耐酸碱、抗污染、易清洗,在水处理行业得到越来越多应用[10-11]。
本研究以模拟低浓度含铜废水为研究对象,基于循环经济理念,分别以PAA和CTS作为络合剂,耦合陶瓷膜筛分含铜络合物,考察了溶液pH、络合剂/Cu2+质量浓度比(PAA,P/M; CTS,C/M)、溶液杂质离子强度、回用络合剂对Cu2+截留率的影响; 同时,结合膜污染阻力分布计算和SEM、EDX微观表征,探究膜污染机理,为相关研究和重金属废水资源化利用提供参考。
络合-陶瓷膜耦合技术资源化处理模拟低浓度含铜废水
Resourceful treatment of artificial wastewater containing low concentration copper by complexation-ceramic membrane coupling process
-
摘要: 以聚丙烯酸(PAA)和壳聚糖(CTS)作为络合剂,耦合孔径200 nm的陶瓷膜处理模拟低浓度含铜废水,采用ICP-MS、TOC、SEM表征与Darcy膜污染模型对处理效果和膜污染情况进行表征;对比研究不同络合剂对Cu2+截留效果与资源化回用效率的影响;并探讨对应的膜污染机理。结果表明:溶液pH通过影响聚合物络合活性位点对Cu2+截留率起决定性作用;在pH=6、P/M≥5或C/M=10的优化条件下,Cu2+截留率接近100%;PAA相对于CTS对Cu2+的络合效率更高,而CTS具备更好的抗杂质离子干扰能力;酸解、循环回用的PAA与CTS对Cu2+截留率稳定在99%以上。膜污染阻力分布计算和SEM、EDX微观表征表明,滤饼污染为膜污染主要形式,CTS更易造成不可逆的膜孔堵塞污染。Abstract: In this study, polyacrylic acid (PAA) and chitosan (CTS) were taken as the complexing agents to couple the ceramic membrane with a pore size of 200 nm for treating a type of wastewater containing low-concentration copper. The treatment effect and membrane fouling were characterized by ICP-MS, TOC, SEM and Darcy membrane fouling model. And the effects of different complexing agents on Cu2+ rejection and recycling were investigated in detail, as well as the membrane fouling mechanism. Results indicated that solution pH played a decisive role in the Cu2+ rejection by affecting the complexing active sites of the polymers. Under the optimum conditions of pH=6, P/M≥5 or C/M=10, the Cu2+ rejection rate could approach 100%. Compared with CTS, PAA presented a higher complexing efficiency for Cu2+, while CTS showed a better anti-interference ability against impurity ions. The recycled PAA/CTS through acid hydrolysis still maintained above 99% Cu2+ rejection. Combined the membrane pollution resistance distribution calculation with SEM and EDX, the cake layer clogging was identified as the primary membrane fouling, and CTS was more likely to cause the irreversible blockage of membrane pores.
-
Key words:
- ceramic membrane /
- wastewater containing copper /
- ionic strength /
- membrane pollution
-
表 1 陶瓷膜污染阻力分布
Table 1. Ceramic membrane fouling resistance distribution
络合剂 膜总阻力 膜固有阻力 膜孔堵塞阻力 滤饼阻力 数值/(1011m-1) 占比/% 数值/(1011m-1) 占比/% 数值/(1011m-1) 占比/% 数值/(1011m-1) 占比/% PAA 30.30 100.00 5.75 19.00 3.20 10.50 21.35 70.50 CTS 30.00 100.00 5.75 19.00 3.83 12.70 20.42 68.30 表 2 新陶瓷膜与经络合剂-Cu污染后的陶瓷膜EDX分析结果
Table 2. EDX results of new ceramic membrane and the ceramic membrane polluted by PAA-Cu and CTS-Cu
% 元素名称 新膜表面 新膜断面 PAA-Cu膜表面 PAA-Cu膜断面 CTS-Cu膜表面 CTS-Cu膜断面 O 30.70 48.49 28.20 50.69 28.42 31.05 Al 2.63 32.17 0.59 37.44 0.47 24.80 Zr 67.29 19.34 71.20 11.86 60.61 30.25 N 0 0 0 0 10.50 13.90 -
[1] 郝意.线路板印刷含铜废水浓缩方案研究[J].广东化工, 2017, 44(12): 210-211. doi: 10.3969/j.issn.1007-1865.2017.12.094 [2] 杨春华.膜技术在处理重金属废水中的应用[J].三峡环境与生态, 2013, 35(3): 28-32. doi: 10.3969/j.issn.1674-2842.2013.03.009 [3] AZIMI A, AZARI A, REZAKAZEMI M. Removal of heavy metals from industrial wastewaters: A review[J]. ChemBioEng Reviews, 2017, 4(1): 37-59. doi: 10.1002/cben.201600010 [4] 董巧珍.我国工业水资源利用效率及影响因素分析[D].杭州: 浙江财经大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-11482-1018046703.htm [5] JUANG R S. Ultrafiltration rejection of dissolve ions using various weakly basic water-soluble polymers[J]. Journal of Membrane Science, 2000, 177: 207-214. doi: 10.1016/S0376-7388(00)00464-6 [6] PABLO C, ANGEL P, RAFAEL C. Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: Calculation of design parameters[J]. Desalination, 2002, 144: 279-285. doi: 10.1016/S0011-9164(02)00328-4 [7] SPIVAKOV B Y, GECKELER K, BAYER E. Liquid-phase polymer-based retention-the separation of metals by ultrafiltration on polychelatogens[J]. Nature, 1985, 315(23): 313-315. [8] 赵慧.络合-超滤耦合工艺深度处理有色金属矿山重金属废水技术研究[D].邯郸: 河北工程大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10076-1014431407.htm [9] 王卓然, 王广智, 耿钰萱, 等.电镀废水中重金属处理的研究进展[J].电镀与环保, 2017, 37(1): 1-3. doi: 10.3969/j.issn.1000-4742.2017.01.001 [10] 曹莹, 王昆, 李卫星, 等.陶瓷超滤膜脱除水中微量Fe3+[J].南京工业大学学报(自然科学版), 2013, 35(2): 46-50. doi: 10.3969/j.issn.1671-7627.2013.02.009 [11] 黄斌, 张威, 王莹莹, 等.陶瓷膜过滤技术在油田含油污水中的应用研究进展[J].化工进展, 2017, 36(5): 1890-1898. [12] 马敬环, 项军, 李娟, 等.无机陶瓷膜错流超滤海水污染机理研究[J].盐业与化工, 2009, 38(3): 31-34. [13] 李刚, 樊耀波, 袁栋栋.膜污染中污泥层阻力模型及影响因素研究[J].青岛理工大学学报, 2012, 33(3): 54-59. doi: 10.3969/j.issn.1673-4602.2012.03.013 [14] 刘立华, 侯天文, 罗琎, 等.壳聚糖吸附Cu2+的动力学和热力学研究[J].清洗世界, 2017, 33(7): 13-18. doi: 10.3969/j.issn.1671-8909.2017.07.004 [15] 刘玲, 赵萌, 施永生, 等.络合超滤对原水中锑的去除[J].环境工程学报, 2017, 11(3): 1581-1586. [16] 姚春鸣, 范益群.聚合物强化陶瓷膜处理低浓度重金属废水[J].膜科学与技术, 2009, 29(5): 79-82. doi: 10.3969/j.issn.1007-8924.2009.05.017 [17] 成四喜, 黄铮铮, 雷筱娱, 等.离子交换树脂法处理含铜废水的研究进展[J].化工环保, 2014, 35(3): 230-234. doi: 10.3969/j.issn.1006-1878.2014.03.007 [18] DAI X, BREUER P L, JEFFREY M I. Comparison of activated carbon and ion-exchange resins in recovering copper from cyanide leach solutions[J]. Hydrometallurgy, 2010, 101(1): 48-57. [19] KRYVORUCHKO A, YURLOVA L, KONILOVICH B. Purification of water containing heavy metals by chelating-enhanced ultrafiltration[J]. Desalination, 2002, 144(1/2/3): 243-248. [20] 张永锋, 许振良.络合-超滤-电解集成过程处理重金属工业废水Ⅰ络合-超滤耦合过程[J].化学世界, 2002, 43(S1): 171-174. [21] 谢章旺, 邵嘉慧, 何义亮.壳聚糖络合-超滤耦合过程去除溶液中铅离子的研究[J].环境科学, 2010, 31(6): 1532-1536. [22] 郭敏杰, 刘振, 李梅.壳聚糖吸附重金属离子的研究进展[J].化工环保, 2004, 24(4): 262-265. doi: 10.3969/j.issn.1006-1878.2004.04.008 [23] 相波, 刘亚菲, 李义久, 等.壳聚糖及其衍生物对重金属吸附性能的研究[J].工业水处理, 2004, 24(5): 10-12. doi: 10.3969/j.issn.1005-829X.2004.05.003 [24] 夏强, 李琛.壳聚糖及其衍生物在废水处理中的应用进展[J].化工技术与开发, 2013(3): 40-43. doi: 10.3969/j.issn.1671-9905.2013.03.016 [25] 张新欢, 夏圣骥.新型纳米SiO2陶瓷膜和聚合物膜对有机物去除的比较[J].水处理技术, 2015, 41(4): 20-24. [26] 田岳林, 袁栋栋, 李汝琪.陶瓷膜污染过程分析与膜清洗方法优化[J].环境工程学报, 2013, 7(1): 253-257.