-
双酚A(bisphenol A, BPA)是一种雌激素,主要来源于环氧树脂、聚苯醚树脂、聚碳酸酯等多种聚合体系材料的生产。双酚A在环境中能长期存在,难以降解,能够影响天然激素在生物体内的分泌、运输、结合、作用、代谢等作用,从而对生物体的健康造成危害[1]。有研究[2]表明,在大脑发育的过程中,双酚A会影响脑内雌激素合成酶的活性,从而改变脑内雌激素受体的表达,最终干扰雌激素对大脑发育的调节。暴露在一定量的双酚A下会对生殖功能产生巨大危害[3-7],还可能引发癌症[8]、糖尿病[9]、免疫力下降[10]、肝功能紊乱[11]等多种疾病。
目前,双酚A废水的主要处理方法有生物法、物理法和高级氧化法。曾湘梅等[11]提出SBR工艺对BPA有良好的去除能力,在温度为20 ℃、充水比为50%、总HRT为480 min的条件下,BPA总去除率可达到99%;高士博[12]对不同水生植物去除双酚A的能力进行了考察了, 结果表明,阔叶香蒲、花叶香蒲、香蒲和芦苇都能不同程度地降低废水中的双酚A含量,KITAOKA等[13]发现环状糊精聚合物对双酚A具有良好的吸附作用,当pH为7.0、吸附剂为5 mg·mL-1、反应时间为2 h时,BPA的去除率可达到97%;ALI等[14]研究了还原氧化石墨烯负载纳米金粒子(Au/RGO)对双酚A的光催化降解,结果表明,纳米金粒子的含量对光催化降解双酚A的影响较大。
近年来,高级氧化技术因其降解效果好而广泛应用于BPA的降解研究[15-17]。其中,非均相臭氧催化氧化技术因其催化剂机械强度高、成本低、易回收等优点,具有较大的研究和应用价值。目前臭氧催化氧化法中的催化剂研究多集中在碳质材料、过渡金属氧化物、负载在载体上的过渡金属及其氧化物[18],对树脂基的催化剂研究较少。本研究将改性的螯合树脂与臭氧联用,建立并优化臭氧催化氧化方法,并探究不同因素对CuOx/D851催化臭氧氧化双酚A性能的影响以及降解反应机理。
铜氧化物/D851树脂催化臭氧氧化降解双酚A
Degradation of bisphenol A through catalytic ozonation process with copper oxide/D851 resin
-
摘要: 通过Cu(NO3)2·3H2O对螯合树脂D851进行沉淀改性,采用SEM观察、EDS分析、傅里叶变换红外谱图分析对改性前后螯合树脂进行了表征;研究了改性前后螯合树脂在不同反应体系对双酚A的降解效果及环境因素对CuOx/D851催化臭氧氧化双酚A性能的影响;探讨了改性螯合树脂催化臭氧化降解双酚A的机理。结果表明:Cu(NO3)2·3H2O对螯合树脂D851改性后,螯合树脂的表面形态,铜离子含量都有所改变;通过正交实验得出CuOx/D851树脂催化剂的最佳制备工艺是pH为8、活性组分浓度为337.5 mmol·L-1、负载温度为70 ℃、反应时间为10 h;单因素法研究表明,在最佳条件臭氧投加量为8.4 mg·L-1、催化剂投加量为0.6 g·L-1、废水进样流量为4 mL·min-1、双酚A初始浓度为10 mg·L-1、初始pH为7,双酚A的降解率可达86.71%;在改性螯合树脂催化臭氧化体系中,改性后螯合树脂主要通过羟基自由基-直接臭氧氧化协同作用极大地提高了对BPA的降解率。Abstract: In this study, the chelating resin D851 was modified by Cu(NO3)2·3H2O precipitation, then SEM, EDS and FT-IR were used to characterize the corresponding changes before and after modification of D851. Bisphenol A degradation effects by pristine and modified D851 in different reaction systems were studied, and the influences of environmental factors on the performance of catalytic ozonation of bisphenol A by CuOx/D851 were investigated. Furthermore, the mechanism of bisphenol A degradation by catalytic ozonation with modified D851 was discussed. The results showed that the surface morphology and copper ion content of chelating resin D851 changed after modification by Cu(NO3)2·3H2O precipitation. Through the orthogonal experiments, the optimal preparation conditions for CuOx/D851 resin catalyst was determined as follows: pH 8, active component content of 337.5 mmol·L-1, loading temperature of 70 ℃, and reaction time of 10 h. The single factor method was used to optimize the operational conditions for bisphenol A degradation by catalytic ozonation with modified D851, and the degradation rate was 86.71% at the following optimum conditions: ozone flow rate of 8.4 mg·L-1, 0.6 g·L-1 CuOx/D851, wastewater influent flow rate of 4 mL·min-1, initial bisphenol A concentration of 10 mg·L-1, and initial pH 7. In modified chelating resin catalytic ozonation system, the modified chelating resin largely improved the BPA degradation rate through the synergistic effect of hydroxyl radical-direct ozone oxidation.
-
Key words:
- catalytic ozonation /
- chelating resin /
- bisphenol A pollution /
- copper oxide
-
表 1 CuOx/D851催化剂的正交实验设计
Table 1. Orthogonal experimental design of CuOx/D851 catalyst
序号 C/(mmol.L-1) T/℃ pH t/h 去除率/% 1 2 3 4 1 90 60 8 6 85.09 2 90 70 9 8 86.86 3 90 80 10 10 85.23 4 225 60 9 10 84.35 5 225 70 10 6 87.01 6 225 80 8 8 85.38 7 337.5 60 10 8 83.90 8 337.5 70 8 10 87.60 9 337.5 80 9 6 85.97 K1 85.73 84.45 86.02 86.02 K2 85.58 87.16 85.73 85.38 K3 85.82 85.53 85.38 85.73 R 0.24 2.71 0.64 0.64 注:K1、K2、K3为双酚A去除率的平均值,R为极差。 -
[1] ESRA B S, BAYRAM K, MANSUR A, et al. Graphene oxide based heterojunction TiO2-ZnO catalysts with outstanding photocatalytic performance for bisphenol A, ibuprofen and flurbiprofen[J]. Journal of Industrial and Engineering Chemistry, 2018, 59(5): 115-126. [2] 陈蕾, 徐晓虹, 田栋.环境雌激素双酚A对脑和行为发育的影响[J].中国科学C辑:生命科学, 2009, 39(12): 1111-1119. [3] LI D K, ZHOU Z J, MIAO M, et al. Urine bisphenol A(BPA) level in relation to semen quality[J]. Fertility and Sterility, 2011, 95(2): 625-630. doi: 10.1016/j.fertnstert.2010.09.026 [4] DODGE L E, WILLIAMS P L, WILLIAMS M A, et al. Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic[J]. Environmental Health Perspective, 2015, 123(7): 665-671. doi: 10.1289/ehp.1408605 [5] GOLDSTONE A E, CHEN Z, PERRY M J, et al. Urinary bisphenol A and semen quality, the life study[J]. Reproductive Toxicology, 2015, 51(7): 7-13. [6] 周芩.双酚A对男性生殖功能的影响及机制探索[D].太原: 山西医科大学, 2013. [7] DEB P, BHAN A, HUSSAIN I, et al. Endocrine disrupting chemical, bisphenol A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo[J]. Gene, 2016, 590(2): 1609-1620. [8] GRUN F, BLUMBERG B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis[J]. Reviews in Endocrine & Metabolic Disorders, 2007, 8(2): 161-171. [9] DONG X, ZHANG Z, MENG S L, et al. Parental exposure to bisphenol A and its analogs influences zebrafish offspring immunity[J]. Science of the Total Environment, 2018, 610(1): 291-297. [10] KAZEMI S, KANI S N M, REZAZADEH L, et al. Low dose administration of bisphenol A induces liver toxicity in adult rats[J]. Biochemical and Biophysical Research Communications, 2017, 494(1/2): 107-112. [11] 曾湘梅, 李咏梅, 赵俊明. SBR工艺去除模拟城市污水中双酚A的研究[J].环境污染与防治, 2008, 30(10): 22-27. [12] 高士博.潜流人工湿地去除毒死蜱、双酚A和4-壬基酚的研究[D].杭州: 浙江大学, 2014. [13] KITAOKA M, HAYASHI K. Adsorption of bisphenol A by cross-linked β-cyclodextrin polymer[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44(1/4): 429-431. doi: 10.1023/A:1023024004103 [14] ALI H, GANA N R. Plasmonic photocatalysis: Complete degradation of bisphenol A by a gold nanoparticle-reduced graphene oxide composite under visible light[J]. Photochemical & Photobiological Sciences, 2018, 17(5): 628-637. [15] UMAR M, RODDICK F, FAN L, et al. Application of ozone for the removal of bisphenol A from water and wastewater: A review[J]. Chemosphere, 2013, 90(8): 2197-2207. doi: 10.1016/j.chemosphere.2012.09.090 [16] 胡玲, 高乃云. Fenton试剂降解内分泌干扰物双酚A的研究[J].中国给水排水, 2011, 27(7): 80-86. [17] 顾雍.生物降解及过硫酸盐氧化去除典型酚类有机污染物的研究[D].上海: 华东理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10251-1018225674.htm [18] 朱秋实, 陈进富, 姜海洋, 等.臭氧催化氧化机理及其技术研究进展[J], 化工进展, 2014, 33(4): 1010-1014. [19] 程敬泉, 张素芳, 孙瑞祥, 等.超声诱导微钠氧化铜的制备及红外光谱研究[J].化学工程与装备, 2017(6): 37-39. [20] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions[J]. Environmental Science & Technology, 1985, 19(12): 1206-1213. [21] 蒋广安, 赵越, 李宝忠, 等.臭氧催化氧化深度处理反渗透浓水[J].当代化工, 2018, 47(4): 749-752. doi: 10.3969/j.issn.1671-0460.2018.04.023 [22] 袁增.铈氧化物催化臭氧化降解双酚A废水研究[D].成都: 西南石油大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10615-1016099977.htm [23] SHUKLA P R, WANG S, SUN H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution[J]. Applied Catalysis B: Environmental, 2010, 100(3/4): 529-534. [24] 王宏伟, 王天来, 齐岩, 等.臭氧催化氧化工艺中pH值对催化剂活性的影响研究[J].化工科技, 2017, 25(5): 53-56. doi: 10.3969/j.issn.1008-0511.2017.05.011 [25] 杨德敏, 王益平, 阚涛涛, 等.臭氧氧化处理页岩气钻井废水的机理与动力学[J].化工环保, 2015, 35(5): 464-468. doi: 10.3969/j.issn.1006-1878.2015.05.004 [26] XU B B, QI F, ZHANG J Z, et al. Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: Catalyst surface properties characterization and reaction mechanism[J]. Chemical Engineering Journal, 2016, 284(2): 942-952.