-
锑是工业制造中一种重要的元素,广泛应用于阻燃剂、合金等行业[1]。随着经济的发展,含锑工业废水的排放对环境的污染问题逐渐成为人们关注的焦点[2]。锑不是生物体必须的元素,在人体内可以与巯基结合,导致细胞内酶失活或细胞内离子失衡,最终引起人体代谢紊乱,其中三价锑的毒性比五价锑高10倍[3]。因此, 全球各地对饮用水中的锑含量都有明确限定,美国允许最大浓度为6 μg·L-1,日本为2 μg·L-1[4],我国在最新的《生活饮用水卫生标准》(GB 5749-2006)中对锑的限值浓度为5 μg·L-1。
目前,使用较多的除锑方法主要有混凝法[5-7]、吸附法[8]、膜分离[9-10]等,吸附是一种高效去除水体中锑污染物的方法,具有处理量大、成本低等特点。生物质吸附材料由于廉价、易获取、可再生的特性成为一种具有前景的吸附材料。邱罡等[11]使用水浮莲干体对废水中的Sb(Ⅲ)进行吸附,发现吸附过程比较迅速,最适宜pH为6.8。有研究发现,太湖蓝藻也可以用于去除水中的Sb(Ⅲ),主要利用藻粉中的羧基、羟基和氨基,通过表面络合作用参与Sb(Ⅲ)的生物吸附,其最大吸附容量为4.88 mg·g-1[12]。然而,与其他吸附材料相比,太湖蓝藻的吸附量较低,将藻体从水中分离也需要耗费大量资源,难以直接实现工业化应用。
研究发现,混凝是一种有效去除藻细胞的方法,特别是改进后的强化混凝法,通过增加混凝剂、助凝剂达到高效除藻的效果[13]。此外,QI等[14]通过高锰酸钾-亚铁预氧化强化混凝法实现了对铜绿微囊藻的高效去除。而徐伟等[15]的研究发现,铁氧化物和锰氧化物对锑的吸附效果较好。这2个方面的研究为制备藻吸附剂提供了新思路,即在收集藻类的同时对藻改性得到高效除锑的吸附剂。
基于此,本研究从资源化的角度出发,以铜绿微囊藻为基础,通过高锰酸钾-亚铁处理过程对藻细胞进行改性,从而制成高性能的复合吸附材料。其次,利用该材料在模拟含锑污水中开展了Sb(Ⅲ)和Sb(Ⅴ)的去除实验,考察了改性前后吸附性能的变化情况和共存阴离子对改性材料吸附能力的影响,并对Sb(Ⅲ)和Sb(Ⅴ)的去除机制进行分析。
铁锰改性铜绿微囊藻对锑的吸附性能
Fabrication of iron-manganese oxide composite modified Microcystis aeroginosa adsorbent for advanced antimony removal
-
摘要: 利用生物质吸附去除水中重金属离子具有制备简单、成本低廉、环境影响小等优点,通过高锰酸钾-硫酸亚铁处理过程对铜绿微囊藻改性,制备了能够高效吸附水中锑(Sb)的铁锰改性藻粉复合材料。扫描电镜和X射线光电子能谱分析表明,改性藻粉中存在大量铁锰氧化物颗粒,铁锰的主要存在形式为Fe2O3和MnO2。改性后的复合藻粉对Sb(Ⅲ)的吸附量从3.06 mg·g-1增加到35.30 mg·g-1,对Sb(Ⅴ)的吸附量从3.07 mg·g-1增加到4.37 mg·g-1,并且改性后的复合藻粉到达吸附平衡的时间更短。Langmuir模型可以很好地描述Sb在复合藻粉上的吸附行为,Elovich模型对藻粉吸附Sb(Ⅲ)和Sb(Ⅴ)的吸附过程拟合较好(R2=0.957,0.943),而复合藻粉更适用准二级动力学模型(R2=0.953,0.961)。Sb(Ⅲ)主要通过氧化和吸附作用被去除,而Sb(Ⅴ)在复合藻粉表面形成表面络合物后被吸附。共存阴离子(SO42-、CO32-、PO43-)的存在对复合藻粉吸附Sb(Ⅲ)几乎没有影响,但是共存阴离子浓度越高,对Sb(Ⅴ)的吸附抑制越明显。Abstract: Bioadsorption as a kind of heavy metal biological treatment technology has many advantages, such as low cost, low environmental pollution, and easy process of treatment. Microcystis aeroginosa was modified during its treatment with potassium permanganate and ferrous sulfate, and the iron-manganese modified algae powder composite materials were prepared for antimony removal from water. Scanning electron micrsocopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis suggests that the modified algae powder contained a large portion of iron (Fe2O3) and manganese (MnO2) oxides particles. In a comparison between normal algae powder and the composite modified algae powder material, the adsorption capacities towards Sb(Ⅲ) and Sb(Ⅴ) increased from 3.06 mg·g-1 to 35.30 mg·g-1 and from 3.07 mg·g-1 to 4.37 mg·g-1, respectively, and the adsorption equilibrium time decreased. The antimony adsorption behavior on the modified composite algae could be well described with Langmuir model. The adsorption kinetics of Sb(Ⅲ) and Sb(Ⅴ) onto unmodified algae powder could be well fitted with the Elovich model (R2 = 0.957, 0.943), while the adsorption kinetics onto modified algae powder could be well fitted with the Pseudo-second order kinetic model (R2 = 0.953, 0961). Sb(Ⅲ) removal was primarily ascribed to oxidation and adsorption, and Sb(Ⅴ) adsorption was assigned as the formation of surface complexes with the modified algae powder. The presence of coexisting anions (SO42-, CO32-, PO43-) had slight effect on the adsorption of Sb(Ⅲ) by algae powder, while the higher concentrations of anions were, the more remarkable the inhibition of Sb(Ⅴ) adsorption was.
-
Key words:
- adsorbent /
- Microsystis aeroginosa /
- antimony /
- iron-manganese oxides /
- adsorption kinetic model
-
表 1 藻粉改性前后及复合藻粉吸附锑后表面元素组成
Table 1. Surface element composition of modified and unmodified algae powder, modified microcystis with antimony adsorption
% 反应阶段 碳 氧 铁 锰 锑 改性前 65.37 34.34 未检出 0.05 未检出 改性后 40.71 44.65 11.63 2.57 未检出 吸附Sb(Ⅲ)后 38.53 45.77 13.11 1.11 1.49 吸附Sb(Ⅴ)后 39.53 44.32 12.58 2.75 0.82 表 2 Sb(Ⅲ)和Sb(Ⅴ)在藻粉和复合藻粉表面吸附动力学拟合参数结果
Table 2. Fitting parameters of adsorption kinetics of Sb(Ⅲ) and Sb(Ⅴ) on modified and unmodified algae powder
吸附材料 吸附质 准一级动力学 准二级动力学 Elovich qm/(mg·g-1) k1/h-1 R2 qm/(mg·g-1) k2/(g·mmol·h-1) R2 k R2 藻粉 Sb(Ⅲ) 2.88 0.12 0.898 2.65 1.00 0.787 0.71 0.957 藻粉 Sb(Ⅴ) 2.71 0.47 0.768 2.69 1.05 0.817 0.62 0.943 复合藻粉 Sb(Ⅲ) 27.10 13.90 0.845 34.20 0.59 0.953 9.26 0.940 复合藻粉 Sb(Ⅴ) 3.26 0.19 0.920 4.28 0.55 0.961 1.33 0.949 表 3 复合藻粉吸附Sb(Ⅲ)和Sb(Ⅴ)的等温吸附方程参数拟合值
Table 3. Fitting parameters of adsorption isotherms of Sb(Ⅲ) and Sb(Ⅴ) on modified algae powder
吸附质 Langmuir模型 Freundlich模型 qm/(mg·g-1) KL/(L·mg-1) R2 KF/(mg·g-1) n R2 Sb(Ⅲ) 175.80 0.10 0.960 24.53 0.44 0.864 Sb(Ⅴ) 4.58 0.14 0.988 0.59 0.74 0.973 -
[1] HE M C, WANG X Q, WU F C, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41-50. [2] PAUL W, PANJAI P, EVERETT S, et al. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water[J]. Water Research, 2007, 42(3): 551-556. [3] MICHAEL K, MARKUS L, KARL H S, et al. External and internal antimony exposure in starter battery production[J]. International Archives of Occupational and Environmental Health, 1995, 67(2): 119-123. doi: 10.1007/BF00572235 [4] KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17): 4171-4179. doi: 10.1016/S0043-1354(03)00351-8 [5] LEYVA A G, MARRERO J, SMICHOWSKI P, et al. Sorption of antimony onto hydroxyapatite[J]. Environmental Science & Technology, 2001, 35(18): 3669-3675. [6] FAN J X, WANG Y J, CUI X D, et al. Sorption isotherms and kinetics of Sb(Ⅴ) on several Chinese soils with different physicochemical properties[J]. Journal of Soils and Sediments, 2013, 13(2): 344-353. doi: 10.1007/s11368-012-0612-z [7] LENG Y Q, GUO W L, SU S G, et al. Removal of antimony(Ⅲ) from aqueous solution by graphene as an adsorbent[J]. Chemical Engineering Journal, 2012, 211: 406-411. [8] PAWLAK Z, CARTWRIGHT P S, OLOYEDE A, et al. Removal of toxic arsenic and antimony from groundwater spiro tunnel bulkhead in park city utah using colloidal iron hydroxide: Comparison with reverse osmosis[J]. Advances in Materials and Processing Technologies, 2010, 83-86: 553-562. [9] GUO X J, WU Z J, HE M C. Removal of antimony(Ⅴ) and antimony(Ⅲ) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17): 4327-4335. doi: 10.1016/j.watres.2009.06.033 [10] WU Z J, HE M C, GUO X J, et al. Removal of antimony (Ⅲ) and antimony (Ⅴ) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis[J]. Separation and Purification Technology, 2010, 76(2): 184-190. doi: 10.1016/j.seppur.2010.10.006 [11] 邱罡, 吴双桃, 陈少瑾.水浮莲干体吸附去除水中的锑(Ⅲ)[J].环境工程学报, 2012, 6(8): 2683-2688. [12] WU F C, SUN F H, WU S, et al. Removal of antimony(Ⅲ) from aqueous solution by freshwater cyanobacteria Microcystis biomass[J]. Chemical Engineering Journal, 2012, 183: 172-179. doi: 10.1016/j.cej.2011.12.050 [13] DHARANI M, BALASUBRAMANIAN S S. Characterization and application of acryloyl chitosan anchored copolymer towards algae flocculation[J]. Carbohydrate Polymers, 2016, 152: 459-467. doi: 10.1016/j.carbpol.2016.07.031 [14] QI J, LAN H C, LIU H J, et al. Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in KMnO4-Fe(Ⅱ) process[J]. Water Research, 2016, 105: 551-558. doi: 10.1016/j.watres.2016.09.042 [15] 徐伟, 刘锐平, 曲久辉, 等.铁锰复合氧化物吸附去除五价锑性能研究[J].环境科学学报, 2012, 32(2): 270-275. [16] MIN C, SCOTT P, WANG H K, et al. Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode[J]. Journal of Materials Chemistry A, 2015, 45(3): 22614-22626. [17] DEREJE H T, INES H, CHRISTIAN D, et al. Electrochemical deposition of Fe2O3 in the presence of organic additives: A route to enhanced photoactivity[J]. RSC Advances, 2015, 125(5): 103512-103522. [18] LI R J, LIU L F, ZHANG Y H, et al. Preparation of a nano-MnO2 surface-modified reduced graphene oxide/PVDF flat sheet membrane for adsorptive removal of aqueous Ni(Ⅱ)[J]. RSC Advances, 2016, 25(6): 20542-20550. [19] GERENTE C, LEE V K C, CLOIREC P L, et al. Application of chitosan for the removal of metals from wastewaters by adsorption: Mechanisms and models review[J]. Critical Reviews in Environmental Science and Technology, 2007, 37(1): 41-127. doi: 10.1080/10643380600729089 [20] HO Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 136(3): 681-689. doi: 10.1016/j.jhazmat.2005.12.043 [21] KANEL S R, GRENECHE J M, CHOI H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6): 2045-2050. [22] QI Z L, JOSHI I P, LIU R P, et al. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony[J]. Journal of Hazardous Materials, 2018, 343: 36-48. doi: 10.1016/j.jhazmat.2017.09.007 [23] 李双双, 戴友芝, 于磊, 等.铁改性海泡石除锑的影响因素研究[J].环境工程学报, 2009, 3(3): 485-488. [24] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40: 1361-1403. doi: 10.1021/ja02242a004 [25] FREUNDLICH H. Concerning adsorption in solutions[J]. Zeitschrift for Physikalische Chemie, 1906, 57(4): 385-470. [26] DONG C L, CHEN W, LIU C, et al. Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446: 179-189. [27] AMLAN G, SAEZ A E, ELA W. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals[J]. Science of the Total Environment, 2006, 363(1/2/3): 46-59. [28] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment: A review focused on natural waters I. Occurrence[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176. [29] HAYES K F, PAPELIS C, LECKIE J O. Modeling ionic-strength effects on anion adsorption at hydrous oxide solution interfaces[J]. Journal of Colloid and Interface Science, 1988, 125(2): 717-726. doi: 10.1016/0021-9797(88)90039-2