-
随着水环境质量的要求越来越高,工业废水的排放标准也越来越严格。其中氨氮是当下水环境治理的重要指标,同时工业废水氨氮浓度差异大,处理工艺多样化,但高标准的达标工艺还有所欠缺[1-6]。一般的工业废水污染物排放标准中,COD≤80 mg·L-1、NH4+-N≤25 mg·L-1、TN≤35 mg·L-1、TP≤0.5 mg·L-1,这已经不能满足城市发展的需要,各企业需要达到更高的污染物排放标准。因而迫切需要对工业废水的深度处理展开研究[7-10]。
由于生物法处理技术具有操作管理简单、出水效果稳定、不产生二次污染、经济性较好等优点,是目前处理高氨氮工业废水的常用工艺[11]。目前常见的处理工艺有传统生物硝化反硝化技术、同步硝化反硝化(SND)技术、短程硝化反硝化(SHARON)技术、厌氧氨氧化(ANAMMOX)技术等[12]。传统的生物脱氮技术方面,KRITHIKA等[13]采用A/O膜生物反应器工艺处理工业废水,实现了连续6个月的稳定运行,达到出水NH4+-N浓度低于5 mg·L-1的去除效果。BASSIN等[14]在膜生物反应器中应用同步硝化反硝化时发现,在DO为1 mg·L-1,C/N=30,pH=7.2条件下,COD、NH4+-N和TN的去除率分别为96%、95%和92%,但该工艺仍处于进一步研究阶段,尚未应用于工程实践中。何岩等[15]应用SHARON与ANAMMOX耦合工艺处理垃圾渗滤液,在进水NH4+-N和NO2--N浓度均不超过250 mg·L-1的情况下,去除率可分别达到80%和90%。
常规活性污泥法受限于进水COD过高,系统中的硝化菌生长受到很大的限制,所以系统对NH4+-N的去除效果较差[16]。在对污染物的去除过程中,需要将COD和NH4+-N的去除过程区别开,避免高COD值对硝化作用的抑制。因此,针对高氨氮工业废水的特点,提出多级流化床-曝气生物滤池组合工艺,可以保证活性污泥的相对独立性,分别实现对不同污染物的去除,避免相互之间的干扰影响。本研究以高氨氮工业废水为处理对象,实现中试系统的成功启动,研究废水处理效果,并将其与传统活性污泥法进行比较,为高氨氮工业废水处理应用提供参考。
多级流化床-曝气生物滤池中试处理高氨氮废水
Pilot test of multi-stage fluidized bed-biological aerated filter for high-strength ammonia-nitrogen wastewater treatment
-
摘要: 采用多级流化床-曝气生物滤池组合工艺,以高氨氮工业废水为处理对象,研究了中试系统的启动方法、稳定运行阶段对污染物的去除效能及与传统活性污泥法相比的优势。结果表明:采用控制进水流量和逐步增加进水负荷的运行方法,历时近50 d,可实现中试系统的启动;启动阶段,系统对COD和NH4+-N的平均去除率分别为68.74%和97.92%,出水COD和NH4+-N的质量浓度平均分别为176.35 mg·L-1和13.52 mg·L-1;稳定运行阶段,系统在进水流量为2.0 m3·d-1 的工况下,对COD和NH4+-N的平均去除率分别为92.66%和99.32%,出水COD和NH4+-N的质量浓度平均分别为152.24 mg·L-1和1.32 mg·L-1,其中,出水的NH4+-N可以稳定达到地表水Ⅳ类水标准。与传统活性污泥法工艺相比较,该中试系统可以实现对COD的去除率从85.37%增加到92.66%,对NH4+-N的去除率从72.53%增加到99.32%。Abstract: The combination pilot process of multi-stage fluidized bed-biological aerated filter was used to treat high-strength ammonia-nitrogen industrial wastewater. The start-up method of this pilot system and pollutants removal efficiency during its stable operation stage were studied, and its superiority over traditional activated sludge processes were also determined. The results showed that the start-up of this pilot system could be accomplished within about 50 d through controlling the flow rate and gradually elevating the inflow load. At the start-up stage, the removal efficiencies of COD and NH4+-N were 68.74% and 97.92%, respectively. The COD and NH4+-N concentrations in effluent were 176.35 mg·L-1 and 13.52 mg·L-1, respectively. At the stable stage with the flow rate of 2.0 m3·d-1, the average removal efficiencies of COD and NH4+-N were 92.66% and 99.32%, respectively, and the average COD and NH4+-N concentrations in effluent were 152.24 mg·L-1 and 1.32 mg·L-1, respectively. Of which the NH4+-N concentration in effluent could meet the requirement of class Ⅳ water standard for surface water. Compared with the traditional activated sludge process, the pilot system of multi-stage fluidized bed-biological aerated filter could improve the COD and NH4+-N removal efficiencies from 85.37% to 92.66% and from 72.53% to 99.32%, respectively.
-
表 1 实验各反应单元的外观尺寸
Table 1. Size of each experimental reaction unit
反应单元 长/m 宽/m 高/m 厌氧池 0.8 0.4 3.15 缺氧池 0.8 0.8 3.15 好氧池1 1.2 0.8 3.15 好氧池2 0.8 0.8 3.15 好氧池3 1.6 0.8 2.7 -
[1] 崔树军, 谷立坤, 张建云, 等.高氨氮废水的处理技术及研究应用现状[J].中国给水排水, 2013, 26(14): 26-29. [2] 金源, 夏建新, 张紫君.工业废水中氨氮处理方法比较分析[J].工业水处理, 2013, 33(7): 5-10. doi: 10.3969/j.issn.1005-829X.2013.07.002 [3] 刘亚敏, 郝卓莉.高氨氮废水处理技术及研究现状分析[J].水处理技术, 2014, 3(5): 7-11. [4] WEN X, GONG B Z, ZHOU J, et al. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations[J]. Water Research, 2017, 119: 201-211. doi: 10.1016/j.watres.2017.04.052 [5] 郝火凡, 胡晓明.高氮垃圾渗滤液SBBR生物脱氮工艺特性研究[J].水处理技术, 2013, 35(9): 48-51. [6] 于跃, 李渊博. A2O氧化沟-混凝沉淀-反硝化深床滤池工艺在大型经开区污水处理中的应用[J].工业用水与废水, 2016, 47(3): 3-5. [7] 郑彭生, 吴雪茜, 周如禄, 等.处理高氨氮废水亚硝化细菌培养实验研究[J].水处理技术, 2018, 44(2): 60-62. [8] 刘平, 王晓, 刘春.微气泡曝气生物流化床反应器SNAD过程脱氮性能研究[J].水处理技术, 2018, 44(5): 113-118. [9] KERMANSHAHI A, KARAMANEV D, MARGARITIS A. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor[J]. Water Research, 2015, 39(15): 3704-3714. [10] SARAVANAN P, PAKSHIRAJAN K, SAHA P. Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly pseudomonas[J]. Bioresource Technology, 2014, 99(18): 8553-8558. [11] 吴锦华, 李平, 谭展机, 等.三相生物流化床处理苯胺废水的硝化特性研究[J].水处理技术, 2015, 33(9): 30-33. [12] DENG L J, GUO W S, NGO H H. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system[J]. Bioresource Technology, 2016, 208: 87-93. doi: 10.1016/j.biortech.2016.02.057 [13] KRITHIKA D, PHILIPI P. Treatment of wastewater from water based paint industries using submerged attached growth reactor[J]. Bioresource Technology, 2016, 93(16): 8467-8471. [14] BASSIN J P, DIAS I N, CAO S M S, et al. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions[J]. Process Safety and Environmental Protection, 2016, 100: 131-141. doi: 10.1016/j.psep.2016.01.007 [15] 何岩, 周恭明, 赵由才, 等.亚硝酸型硝化-厌氧氨氧化联合工艺处理"中老龄"垃圾渗滤液[J].给水排水, 2016, 32(10): 43-46. [16] ZHANG L, LIU J L, LIU C. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment[J]. Water Science and Technology, 2016, 74(1): 138-146. doi: 10.2166/wst.2016.187 [17] 国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.