-
随着社会经济的迅速发展,我国农村水体环境日益恶化,严重影响了美丽乡村建设和农村经济的可持续发展[1-2]。农村生活污水排放点多而分散,水量水质波动大,且处理规模普遍较小;此外,农村生活污水排放标准日趋严格,这就要求污水处理工艺具有建设和运行费用低、运行维护简便、脱氮除磷效果好等特点[3]。
微生物的好氧硝化和缺氧反硝化作用被认为是污水脱氮的主要途径[4]。然而,在好氧去除NH4+-N的同时,有机物被大量消耗,使反硝化脱氮由于缺少有机碳源被严重抑制。因此,在对好氧单元出水进行后置反硝化脱氮时,需要添加有机碳源。常见的有机碳源包括甲醇、乙酸钠、葡萄糖等工业碳源[5-6]、固体农业碳源[7-8]以及原污水[9-10]等。与前2类碳源相比,以原污水作为有机碳源无需药剂费,且运行维护方便,但是引入原污水同时会将NH4+-N带入后置反硝化单元,可能导致出水NH4+-N超标。因此,前人研究大多将原污水的添加比例控制在50%以内[9, 11]。然而,对于低COD/TN(C/N)生活污水,加入的原污水比例低,提供的有机碳源少,难以取得较好的反硝化脱氮效果。因此,研发能同时高效去除NO3--N和NH4+-N的深度处理工艺具有重要的意义。
潮汐流人工湿地(TFCW)是一种具有新型供氧机制的人工湿地,它通过周期性淹水-排水在系统内营造了缺氧和好氧交替的环境,从而取得了良好的NH4+-N和TN去除效果[12]。然而,显著强化的传氧能力使TFCW在宏观上处于好氧环境,进水中的碳源优先被氧化而不能被用于反硝化过程,导致TFCW的TN去除率低于70%[13]。淹水和排水周期是影响潮汐流人工湿地缺氧和好氧条件的重要参数,进而影响系统的脱氮效率。为了达到理想的处理效果,潮汐流人工湿地通常采用长周期模式(高于6 h)[12, 14-15],短周期潮汐流人工湿地处理效果如何还未见报道。另一方面,植物在人工湿地去除污染物方面发挥了重要作用[16],然而,植物对潮汐流人工湿地脱氮的影响暂时还不清楚。
针对以上问题,本研究设计了潮汐流与垂直潜流人工湿地叠置的新型人工湿地,对1个好氧单元出水进行深度脱氮,并添加一定比例原污水(C/N≈2.70)作为有机碳源,该好氧单元为高负荷地下渗滤系统[17]。本研究通过对人工湿地在短周期(3 h)运行模式下进出水污染物浓度的分析,评价了系统结构(单向流和双向复合流)、植物以及填料深度对人工湿地脱氮除磷的影响。研究结果对于人工湿地结构优化以及低C/N污水深度处理效果改善方面均有较好的借鉴意义。
组合型人工湿地对二级好氧单元出水的深度处理
Advanced treatment of secondary aerobic unit effluent by combined constructed wetlands
-
摘要: 经过好氧处理后,污水中有机碳通常被降解去除进而影响后续反硝化的进行。为了解决反硝化因缺少碳源受到抑制的问题,设计了3组人工湿地作为好氧单元出水的深度处理系统,并添加原污水作为反硝化碳源。3组人工湿地均由潮汐流人工湿地和潜流人工湿地叠置而成,编号分别为CW1、CW2和CW3,其中CW1、CW3为下行-上行复合流,CW2为下行单向流;CW2、CW3表层种植美人蕉(Canna indica),CW1不种植物。在水力负荷为30 cm·d-1的条件下,3组人工湿地对有机物的去除率都在70%左右。CW1对NH4+-N、TN和TP的平均去除率分别为71.2%、51.7%和35.9%;CW2对NH4+-N的处理效果最好,对TN的去除效果最差,平均去除率分别为91.5%和38.3%;CW3能够明显提高TN和TP的处理效果,平均去除率分别为69.9%和62.2%。复合流和种植美人蕉能够明显提高系统对污染物的综合处理性能,这对于优化人工湿地设计以及低C/N生活污水的深度脱氮均有重要的借鉴意义。Abstract: After aerobic treatment, organic carbon is normally depleted which limits the subsequent denitrification. Therefore, three new type constructed wetlands (CWs) named as CW1, CW2 and CW3, combining tidal flow constructed wetland (TFCW) and subsurface flow constructed wetland (SSFCW), were constructed to treat effluent from aerobic unit with raw sewage as organic carbon source. In these three CWs, Canna indica was planted on the top surface of CW2 and CW3, down-up compound flow was used in CW1 and CW3, while one-way flow was used in CW2. At hydraulic loading rate of 30 cm·d-1, COD removal efficiencies by all CWs were about 70%. The average removal efficiencies of NH4+-N, TN and TP by CW1 were 71.2%, 51.7% and 35.9%, respectively. CW2 had the best performance on NH4+-N removal (91.5%) and the worst performance on TN removal (38.3%). Comparably, CW3 could remove 69.9% of TN and 62.2% of TP in average, which were higher than CW1 and CW2. Consequently, better comprehensive removal efficiencies of pollutants were achieved in CW3 with compound flow and Canna indica, which could provide useful information for optimizing the design of constructed wetlands and the advanced treatment of domestic sewage with low C/N ratio.
-
表 1 原污水、渗滤系统出水以及人工湿地进水水质
Table 1. Water quality of raw sewage, SWIS effluent and CWs influent
水样 pH COD/(mg·L-1) TOC/(mg·L-1) NH4+-N/(mg·L-1) NO3--N/(mg·L-1) TN/(mg·L-1) TP/(mg·L-1) COD/TN 原污水 7.58±0.10 92.52±24.58 18.75±5.09 32.93±2.87 0.56±0.43 34.22±3.05 2.52±1.00 2.7 渗滤系统出水 5.47±0.70 16.66±3.04 3.04±0.63 3.64±2.66 25.13±3.57 28.87±2.74 0.95±0.47 0.58 CW1进水 7.46±0.10 58.58±12.52 11.72±2.59 23.48±2.71 7.13±1.43 30.77±2.30 1.98±0.86 1.9 CW2进水 7.51±0.09 61.95±13.31 12.42±2.76 24.13±2.62 6.43±1.66 31.33±2.40 2.02±0.87 1.98 CW3进水 7.51±0.11 59.63±13.23 11.94±2.74 23.69±2.70 7.27±1.53 30.81±2.20 1.97±0.82 1.94 表 2 人工湿地各出水口出水水质
Table 2. Water quality of each effluent of three CWs
人工湿地 出水口 pH 硝化量/ (g·(m2·d)-1) 反硝化量/ (g·(m2·d)-1) NO3--N浓度/ (mg·L-1) NH4+-N TN COD TP 浓度/ (mg·L-1) 去除率/% 浓度/ (mg·L-1) 去除率/% 浓度/ (mg·L-1) 去除率/% 浓度/ (mg·L-1) 去除率/% CW1 E1 7.43±0.18 3.97 3.62 8.29±1.39 10.24±2.13 56.4 17.45±2.43 43.3 19.17±2.43 67.3 1.44±0.60 27.5 E2 7.50±0.17 5.01 4.48 8.91±1.18 6.77±0.68 71.2 14.88±1.08 51.7 17.99±1.12 69.3 1.27±0.51 35.9 CW2 E0 6.65±0.17 6.88 3.94 16.21±2.18 1.21±0.35 95.0 19.19±0.57 38.7 19.33±1.41 68.8 1.47±0.61 27.0 E1 7.38±0.15 6.53 4.05 14.69±2.12 2.38±0.89 90.1 16.99±1.68 45.8 18.36±1.97 70.4 1.14±0.44 43.7 E2 7.38±0.17 6.62 3.69 16.20±2.03 2.06±0.73 91.5 19.33±0.61 38.3 17.42±1.54 71.9 1.04±0.39 48.7 CW3 E1 7.38±0.16 4.43 5.15 4.88±1.86 8.92±4.09 62.4 13.16±3.84 57.3 20.25±3.98 66.0 0.98±0.55 50.4 E2 7.39±0.16 5.65 6.37 4.88±2.13 4.85±1.85 79.5 9.28±1.89 69.9 18.15±2.23 69.6 0.74±0.34 62.2 -
[1] 段先月, 唐朝春, 吴庆庆, 等.农村污水现状及处理技术研究进展[J].水处理技术, 2018, 44(9): 27-31. [2] ZOU J, GUO X S, HAN Y P, et al. Study of a novel vertical flow constructed wetland system with drop aeration for rural wastewater treatment[J]. Water, Air & Soil Pollution, 2012, 223(2): 889-900. [3] 易齐涛, 李慧, 章磊, 等.厌氧/生物滤池/潜流人工湿地组合工艺处理农村生活污水效果评估[J].环境工程学报, 2016, 10(5): 2394-2400. [4] 张亚琼, 崔丽娟, 李伟, 等.潮汐流人工湿地基质硝化反硝化强度研究[J].生态环境学报, 2015, 24(3): 480-483. [5] 郑晓英, 乔露露, 王慰, 等.碳源对反硝化生物滤池运行及微生物种群的影响[J].环境工程学报, 2018, 12(5): 1434-1442. [6] 曹相生, 钱栋, 孟雪征.乙酸钠为碳源时的污水反硝化规律研究[J].中国给水排水, 2011, 27(21): 76-79. [7] 邵留, 徐祖信, 金伟, 等.农业废物反硝化固体碳源的优选[J].中国环境科学, 2011, 31(5): 748-754. [8] 李乐乐, 张卫民, 何江涛, 等.玉米秸秆碳源释放特征及反硝化效果[J].环境工程学报, 2015, 9(1): 113-118. [9] 夏艳阳, 崔理华, 黄小龙.污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J].环境工程学报, 2017, 11(1): 638-644. [10] TORRIJOS V, GONZALO O G, TRUEBA-SANTISO A, et al. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment[J]. Water Reseach, 2016, 103: 92-100. doi: 10.1016/j.watres.2016.07.028 [11] 余灿.改良A2/O碳源分流比及外加黄水补充碳源可行性研究[D].武汉: 武汉理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10497-1012406060.htm [12] WANG Z, HUANG M L, QI R, et al. Enhancing nitrogen removal via the complete autotrophic nitrogen removal over nitrite process in a modified single-stage tidal flow constructed wetland[J]. Ecological Engineering, 2017, 103: 170-179. doi: 10.1016/j.ecoleng.2017.04.005 [13] 胡沅胜, 赵亚乾, 赵晓红.强化总氮去除的改进型潮汐流人工湿地[J].中国给水排水, 2015, 31(15): 133-138. [14] JU X X, WU S B, ZHANG Y S, et al. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system[J]. Water Research, 2014, 59(4): 37-45. [15] ZHI W, JI G D. Quantitative response rslationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035 [16] CUI L H, OUYANG Y, LOU Q, et al. Removal of nutrients from wastewater with Canna india L. under different vertical-flow constructed wetland conditions[J]. Ecological Engineering, 2010, 36(8): 1083-1088. doi: 10.1016/j.ecoleng.2010.04.026 [17] YANG Y Q, ZHAN X, WU S J, et al. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface in infiltration system under intermittent operation and micropower aeration[J]. Bioresource Technology, 2016, 205: 174-182. doi: 10.1016/j.biortech.2015.12.088 [18] 鲁如坤.土壤农业化学分析方法[M]. 2版.北京:中国农业科技出版社, 1992: 309-310. [19] KIZITO S, LV T, WU S B, et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of the Total Environment, 2017, 592: 197-205. doi: 10.1016/j.scitotenv.2017.03.125 [20] 干方群, 周健民, 王火焰, 等.黏土矿物对磷的吸附性能及其在水体净化中的应用[J].农业环境科学学报, 2007, 26(增刊): 447-453. [21] 杨兴胜.高岭石和酸化高岭石对F、NH3-N、Cr吸附性能探讨[J].中国农学通报, 2014, 30(3): 168-172. [22] WU H M, ZHANG J, GUO W S, et al. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: A case study in northern China[J]. Bioresource Technology, 2018, 249: 1092-1096. doi: 10.1016/j.biortech.2017.10.099 [23] 祝志超, 缪恒锋, 崔健, 等.组合人工湿地系统对污水处理厂二级出水的深度处理效果[J].环境科学研究, 2018, 31(12): 2028-2036. [24] 廖波, 林武.强化型垂直流人工湿地用于污水处理厂尾水深度处理[J].中国给水排水, 2013, 29(16): 74-77. [25] 刘昌伟, 薛晨, 杨永哲, 等.新型潮汐流人工湿地深度处理生活污水的研究[J].中国给水排水, 2012, 28(11): 10-13. doi: 10.3969/j.issn.1000-4602.2012.11.003 [26] WEI C J, WU W Z. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment[J]. Chemosphere, 2018, 206: 579-586. doi: 10.1016/j.chemosphere.2018.05.035 [27] ZHU H, YAN B X, XU Y Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018 [28] 刘庚, 李胜男, 黄磊, 等. COD/N对潜流人工湿地脱氮效能及N2O排放的影响[J].环境工程学报, 2016, 10(12): 6907-6913. doi: 10.12030/j.cjee.201507170 [29] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Sciences of the Total Environment, 2007, 380(1/2/3): 48-65. [30] LIMA M X, CARVALHO K Q, PASSIG F H, et al. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions[J]. Sciences of the Total Environment, 2018, 630: 1365-1373. doi: 10.1016/j.scitotenv.2018.02.342 [31] 尉中伟, 王晓昌, 郑于聪, 等.水平潜流人工湿地脱氮功效中植物的作用[J].环境工程学报, 2015, 9(2): 595-602. [32] LIU F F, FAN J, DU J, et al. Intensified nitrogen transformation in intermittently aerated constructed wetlands: Removal pathways and microbial response mechanism[J]. Sciences of the Total Environment, 2019, 650: 2880-2887. doi: 10.1016/j.scitotenv.2018.10.037 [33] WANG J X, TAI Y P, MAN Y, et al. Capacity of various single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China[J]. Ecological Engineering, 2018, 115: 35-44. doi: 10.1016/j.ecoleng.2018.02.008 [34] 李洁, 吕锡武, 谢静.水培番茄滤床-折流板式潜流湿地深度净化农村生活污水[J].环境工程学报, 2016, 10(8): 4018-4024.