硫自养与异养混合亚硝酸盐反硝化过程铵生成机制

刘双, 王莎, 兰兰, 李晓玲, 芦昭霖. 硫自养与异养混合亚硝酸盐反硝化过程铵生成机制[J]. 环境工程学报, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
引用本文: 刘双, 王莎, 兰兰, 李晓玲, 芦昭霖. 硫自养与异养混合亚硝酸盐反硝化过程铵生成机制[J]. 环境工程学报, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
LIU Shuang, WANG Sha, LAN Lan, LI Xiaoling, LU Zhaolin. Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
Citation: LIU Shuang, WANG Sha, LAN Lan, LI Xiaoling, LU Zhaolin. Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064

硫自养与异养混合亚硝酸盐反硝化过程铵生成机制

  • 基金项目:

    国家自然科学基金资助项目51778057国家自然科学基金资助项目(51778057)

Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process

  • Fund Project:
  • 摘要: 为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO2--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。
  • 加载中
  • [1] CHEN C, WANG A, REN N, et al. Optimal process pattern for simultaneous sulfur, nitrogen and carbon removal[J]. Water Science & Technology, 2009, 59(4): 833-837.
    [2] 陈川. EGSB同步脱硫反硝化的运行效能和颗粒污泥的特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [3] WONG B T, LEE D J. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture[J]. Bioresource Technology, 2011, 102(12): 6673-6679.
    [4] 蔡靖, 郑平. 氮素基质类型对同步厌氧生物脱氮除硫工艺性能的影响[J]. 高校化学工程报, 2009, 26(5): 864-870.
    [5] YIN Z X, XIE L, CUI X W, et al. Effective carbon and nitrogen removal with reduced sulfur oxidation in an anaerobic baffled reactor for fresh leachate treatment[J]. Journal of Bioscience & Bioengineering, 2016, 123(1): 84-90.
    [6] DOLEJS P, PACLíK L, MACA J, et al. Effect of S/N ratio on sulfide removal by autotrophic denitrification[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2383-2392.
    [7] GUVEN D, DAPENA A, KARTAL B, et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2005, 71(2): 1066-1071.
    [8] KARTAL B, KUYPERS M M M, LAVIK G, et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3): 635-642.
    [9] KARTAL B, RATTRAY J, NIFTRIK L A V, et al. Candidatus “Anammoxoglobuspropionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49.
    [10] SHU D T, HE Y L, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196(11): 621-633.
    [11] WINKLER M K H, KLEEREBEZEM R, LOOSDRECHT M C M V. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1): 136-144.
    [12] 殷士学, 陆驹飞. 硝酸异化还原成铵的微生物学过程[J]. 微生物学通报, 1997, 24(3): 170-173.
    [13] 陈韬, 邹子介, 剑沣. 碳源对生物滞留系统中硝酸盐异化还原成铵的影响研究[J]. 环境工程, 2017, 35(10): 71-75.
    [14] HAMILTON B S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front Ecological Environment, 2007, 5(2): 89-96.
    [15] LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480.
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2): 131-138.
    [18] JIN R C, YANG G F, ZHANG Q Q, et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research, 2013, 47(3): 1459-1469.
    [19] ALGAR C K, VALLINO J J. Predicting microbial nitrate reduction pathways in coastal sediments[J]. Aquatic Microbial Ecology, 2014, 71(3): 223-238.
    [20] STREMINSKA M A, FELGATE H, ROWLEY G, et al. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria[J]. Environmental Microbiology Reports, 2012, 4(1): 66-71.
    [21] 刘彬彬. 高效废水处理生物反应器中优势功能菌的分子识别与鉴定[D]. 上海: 上海交通大学, 2006.
    [22] MOHAN S B, SCHMID M, JETTEN M, et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia: A short circuit in the biological nitrogen cycle that competes with denitrifcation[J]. FEMS Microbiology Ecology, 2004, 49(3): 433-443.
  • 加载中
计量
  • 文章访问数:  4451
  • HTML全文浏览数:  4395
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18
刘双, 王莎, 兰兰, 李晓玲, 芦昭霖. 硫自养与异养混合亚硝酸盐反硝化过程铵生成机制[J]. 环境工程学报, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
引用本文: 刘双, 王莎, 兰兰, 李晓玲, 芦昭霖. 硫自养与异养混合亚硝酸盐反硝化过程铵生成机制[J]. 环境工程学报, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
LIU Shuang, WANG Sha, LAN Lan, LI Xiaoling, LU Zhaolin. Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064
Citation: LIU Shuang, WANG Sha, LAN Lan, LI Xiaoling, LU Zhaolin. Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1366-1373. doi: 10.12030/j.cjee.201810064

硫自养与异养混合亚硝酸盐反硝化过程铵生成机制

  • 1. 长安大学环境科学与工程学院,西安 710064
基金项目:

国家自然科学基金资助项目51778057国家自然科学基金资助项目(51778057)

摘要: 为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO2--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回