[1] |
CHEN C, WANG A, REN N, et al. Optimal process pattern for simultaneous sulfur, nitrogen and carbon removal[J]. Water Science & Technology, 2009, 59(4): 833-837.
|
[2] |
陈川. EGSB同步脱硫反硝化的运行效能和颗粒污泥的特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
|
[3] |
WONG B T, LEE D J. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture[J]. Bioresource Technology, 2011, 102(12): 6673-6679.
|
[4] |
蔡靖, 郑平. 氮素基质类型对同步厌氧生物脱氮除硫工艺性能的影响[J]. 高校化学工程报, 2009, 26(5): 864-870.
|
[5] |
YIN Z X, XIE L, CUI X W, et al. Effective carbon and nitrogen removal with reduced sulfur oxidation in an anaerobic baffled reactor for fresh leachate treatment[J]. Journal of Bioscience & Bioengineering, 2016, 123(1): 84-90.
|
[6] |
DOLEJS P, PACLíK L, MACA J, et al. Effect of S/N ratio on sulfide removal by autotrophic denitrification[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2383-2392.
|
[7] |
GUVEN D, DAPENA A, KARTAL B, et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2005, 71(2): 1066-1071.
|
[8] |
KARTAL B, KUYPERS M M M, LAVIK G, et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3): 635-642.
|
[9] |
KARTAL B, RATTRAY J, NIFTRIK L A V, et al. Candidatus “Anammoxoglobuspropionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49.
|
[10] |
SHU D T, HE Y L, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196(11): 621-633.
|
[11] |
WINKLER M K H, KLEEREBEZEM R, LOOSDRECHT M C M V. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1): 136-144.
|
[12] |
殷士学, 陆驹飞. 硝酸异化还原成铵的微生物学过程[J]. 微生物学通报, 1997, 24(3): 170-173.
|
[13] |
陈韬, 邹子介, 剑沣. 碳源对生物滞留系统中硝酸盐异化还原成铵的影响研究[J]. 环境工程, 2017, 35(10): 71-75.
|
[14] |
HAMILTON B S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front Ecological Environment, 2007, 5(2): 89-96.
|
[15] |
LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480.
|
[16] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[17] |
BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2): 131-138.
|
[18] |
JIN R C, YANG G F, ZHANG Q Q, et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research, 2013, 47(3): 1459-1469.
|
[19] |
ALGAR C K, VALLINO J J. Predicting microbial nitrate reduction pathways in coastal sediments[J]. Aquatic Microbial Ecology, 2014, 71(3): 223-238.
|
[20] |
STREMINSKA M A, FELGATE H, ROWLEY G, et al. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria[J]. Environmental Microbiology Reports, 2012, 4(1): 66-71.
|
[21] |
刘彬彬. 高效废水处理生物反应器中优势功能菌的分子识别与鉴定[D]. 上海: 上海交通大学, 2006.
|
[22] |
MOHAN S B, SCHMID M, JETTEN M, et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia: A short circuit in the biological nitrogen cycle that competes with denitrifcation[J]. FEMS Microbiology Ecology, 2004, 49(3): 433-443.
|