UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附

史琳, 叶倩玲, 杨琦, 刘兆香. UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附[J]. 环境工程学报, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
引用本文: 史琳, 叶倩玲, 杨琦, 刘兆香. UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附[J]. 环境工程学报, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
SHI Lin, YE Qianling, YANG Qi, LIU Zhaoxiang. Absorption of carbon tetrachloride from aqueous solution by synthesized UiO-66/graphene oxide[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
Citation: SHI Lin, YE Qianling, YANG Qi, LIU Zhaoxiang. Absorption of carbon tetrachloride from aqueous solution by synthesized UiO-66/graphene oxide[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060

UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附

  • 基金项目:

    北京市产学研项目51900265005

    国家科技重大专项2009ZX07207-008,2009ZX07419-002,2009ZX07207-001,2015ZX07406005-001

    中央高校基本科研业务费专项资金2652013101,2652013086,2652013087

    国家重大科学仪器设备开发专项2012YQ060115北京市产学研项目(51900265005)

    国家科技重大专项(2009ZX07207-008,2009ZX07419-002,2009ZX07207-001,2015ZX07406005-001)

    中央高校基本科研业务费专项资金(2652013101,2652013086,2652013087)

    国家重大科学仪器设备开发专项(2012YQ060115)

Absorption of carbon tetrachloride from aqueous solution by synthesized UiO-66/graphene oxide

  • Fund Project:
  • 摘要: 采用溶剂热法制备了UiO-66和UiO-66/氧化石墨烯复合材料;以水中四氯化碳为处理对象,研究了吸附时间、污染物浓度及温度等因素对吸附过程的影响,并对吸附过程进行动力学和热力学模拟探讨。结果表明,当四氯化碳浓度为10 mg·L-1、30 ℃时,吸附反应在6 h达到平衡,四氯化碳的去除率为87.5%。UiO-66/氧化石墨烯材料对四氯化碳的吸附过程符合拟二级动力学模型。热力学结果显示ΔG0、ΔS>0,由此判断吸附过程是自发、吸热和熵增加的过程。UiO-66/氧化石墨烯材料中比表面积、表面分散力和晶体缺陷的增加使其对四氯化碳具有更好的吸附性能。
  • 加载中
  • [1] BIE P J, FANG X K, LI Z F, et al. Emissions estimates of carbon tetrachloride for 1992-2014 in China[J]. Environmental Pollution, 2017, 224: 670-678.
    [2] ABDELBASSIT M S A, ALHOOSHANI K R, SALEH T A. Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride[J]. Advanced Powder Technology, 2016, 27(4): 1719-1729.
    [3] BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511.
    [4] PASTI L, MARTUCCI A, NASSI M, et al. The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites[J]. Microporous and Mesoporous Materials, 2012, 160: 182-193.
    [5] SHEN W Z, GUO Q J, ZHANG Y S, et al. The effect of activated carbon fiber structure and loaded copper, cobalt, silver on the adsorption of dichloroethylene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273(1/2/3): 147-153.
    [6] TAMBAT S N, SANE P K, SURESH S, et al. Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye[J]. Advanced Powder Technology, 2018, 29(11): 2626-2632.
    [7] ZHANG S T, CHENG R, WANG J L, et al. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks[J]. Chemical Engineering Journal, 2019, 359: 354-362.
    [8] 余阳, 陈团伟, 甄文博, 等. UiO-66(Zr)对As3+的吸附性能及吸附动力学研究[J]. 食品与机械, 2016, 32(6): 61-67.
    [9] 杨清香, 任爽爽, 赵倩倩, 等. 磁性UiO-66复合材料的合成及其对水体中硝基酚有机分子的吸附性能[J]. 无机化学学报, 2017, 33(5): 843-852.
    [10] GE L, WANG L, RUDOLPH V, et al. Hierarchically structured metal-organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture[J]. RSC Advances, 2013, 3(47): 25360-25366.
    [11] PRASANTH K P, RALLAPALLI P, RAJ M C, et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7594-7601.
    [12] ANBIA M, SHEYKHI S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1583-1586.
    [13] ZHOU Y, ZHOU L, ZHANG X H, et al. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity[J]. Microporous and Mesoporous Materials, 2016, 225: 488-493.
    [14] ZHAO Y X, SEREDYCH M, ZHONG Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4951-4959.
    [15] ZHANG Z Z,WANG H, CHEN X Q, et al. Chromium-based metal-organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption[J]. Adsorption, 2015, 21(1/2): 77-86.
    [16] ZHOU X, HUANG W Y, SHI J, et al. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone[J]. Journal of Materials Chemistry A, 2014, 2(13): 4722-4730.
    [17] SUN X J, XIA Q B, ZHAO Z X, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239: 226-232.
    [18] KUMAR R, JAYARAMULU K, MAJI T. K,et al. Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties[J]. Chemical Communications, 2013, 49(43): 4947-4949.
    [19] CAO Y, ZHAO Y X, LV Z J, et al. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 102-107.
    [20] ZHAO Q, YUAN W, LIANG J, et al. Synthesis and hydrogen storage studies of metal-organic framework UiO-66[J]. International Journal of Hydrogen Energy, 2013, 38(29): 13104-13109.
    [21] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4): 367-378.
    [22] EBRAHIM A M, BANDOSZ T J. Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10565-10573.
    [23] JAHAN M, BAO Q, YANG J X, et al. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire[J]. Journal of the American Chemical Society, 2010, 132(41): 14487-14495.
    [24] ZHENG Y, CHE F C, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76.
    [25] 任天昊, 杨智临, 郭琳, 等. UiO-66对废水中二氯苯氧乙酸的吸附特性[J]. 环境科学, 2016, 37(6): 2202-2210.
    [26] PAVAGADHI S, TANG A, SATHISHKUMAR M, et al. Removal of microcystin-LR and microcystin-RR by graphene oxide: Adsorption and kinetic experiments[J]. Water Research, 2013, 47: 4621-4629.
    [27] SALEH T A, ALHOOSHANI K R, ABDELBASSIT M S A, et al. Evaluation of AC/ZnO composite for absorption of dichloromethane, trichloromethane and carbon tetrachloride: Kinetics and isotherms[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 159-169.
    [28] ZHAO G X, LI J X, WANG X K. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets[J]. Chemical Engineering Journal, 2011, 173(1): 185-190.
    [29] 刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中Cr(Ⅵ)研究[J]. 环境科学, 2015, 36(2): 537-544.
    [30] 何春东, 朱雪强, 刘汉湖, 等. 活性氧化铝吸附水中四氯化碳的实验研究[J]. 环境科技, 2012, 25(4): 14-18.
    [31] 彭敏. 粉末活性炭吸附水中四氯化碳试验研究[J]. 供水技术, 2011, 5(2): 18-20.
    [32] 席宏波, 杨琦, 尚海涛, 等. 三氧化二铝超细粉末对水中三氯乙烯吸附特性研究[J]. 地球与环境, 2008, 36(3): 270-275.
    [33] 于谦, 杨春生, 丁成. 1,2二氯苯在3种基质中的吸附研究[J]. 环境工程学报, 2011, 5(7): 1675-1680.
    [34] LI D, QIN L, WANG K, et al. Growth of zeolite crystals with graphene oxide nanosheets[J]. Chemical Communications, 2012, 48(16): 2249-2251.
    [35] ZHANG X Y, GAN B, CREAMER A. E,et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338:102-123.
  • 加载中
计量
  • 文章访问数:  5661
  • HTML全文浏览数:  5575
  • PDF下载数:  147
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03
史琳, 叶倩玲, 杨琦, 刘兆香. UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附[J]. 环境工程学报, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
引用本文: 史琳, 叶倩玲, 杨琦, 刘兆香. UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附[J]. 环境工程学报, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
SHI Lin, YE Qianling, YANG Qi, LIU Zhaoxiang. Absorption of carbon tetrachloride from aqueous solution by synthesized UiO-66/graphene oxide[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060
Citation: SHI Lin, YE Qianling, YANG Qi, LIU Zhaoxiang. Absorption of carbon tetrachloride from aqueous solution by synthesized UiO-66/graphene oxide[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1063-1072. doi: 10.12030/j.cjee.201810060

UiO-66/氧化石墨烯的制备及对水中四氯化碳的吸附

  • 1. 中国地质大学北京,水资源与环境工程北京市重点实验室,北京 100083
  • 2. 中国地质大学北京,地下水循环与环境演化教育部重点实验室,北京 100083
  • 3. 环境保护部,环境保护对外合作中心,北京 100035
基金项目:

北京市产学研项目51900265005

国家科技重大专项2009ZX07207-008,2009ZX07419-002,2009ZX07207-001,2015ZX07406005-001

中央高校基本科研业务费专项资金2652013101,2652013086,2652013087

国家重大科学仪器设备开发专项2012YQ060115北京市产学研项目(51900265005)

国家科技重大专项(2009ZX07207-008,2009ZX07419-002,2009ZX07207-001,2015ZX07406005-001)

中央高校基本科研业务费专项资金(2652013101,2652013086,2652013087)

国家重大科学仪器设备开发专项(2012YQ060115)

摘要: 采用溶剂热法制备了UiO-66和UiO-66/氧化石墨烯复合材料;以水中四氯化碳为处理对象,研究了吸附时间、污染物浓度及温度等因素对吸附过程的影响,并对吸附过程进行动力学和热力学模拟探讨。结果表明,当四氯化碳浓度为10 mg·L-1、30 ℃时,吸附反应在6 h达到平衡,四氯化碳的去除率为87.5%。UiO-66/氧化石墨烯材料对四氯化碳的吸附过程符合拟二级动力学模型。热力学结果显示ΔG0、ΔS>0,由此判断吸附过程是自发、吸热和熵增加的过程。UiO-66/氧化石墨烯材料中比表面积、表面分散力和晶体缺陷的增加使其对四氯化碳具有更好的吸附性能。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回