[1] |
BIE P J, FANG X K, LI Z F, et al. Emissions estimates of carbon tetrachloride for 1992-2014 in China[J]. Environmental Pollution, 2017, 224: 670-678.
|
[2] |
ABDELBASSIT M S A, ALHOOSHANI K R, SALEH T A. Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride[J]. Advanced Powder Technology, 2016, 27(4): 1719-1729.
|
[3] |
BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511.
|
[4] |
PASTI L, MARTUCCI A, NASSI M, et al. The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites[J]. Microporous and Mesoporous Materials, 2012, 160: 182-193.
|
[5] |
SHEN W Z, GUO Q J, ZHANG Y S, et al. The effect of activated carbon fiber structure and loaded copper, cobalt, silver on the adsorption of dichloroethylene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273(1/2/3): 147-153.
|
[6] |
TAMBAT S N, SANE P K, SURESH S, et al. Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye[J]. Advanced Powder Technology, 2018, 29(11): 2626-2632.
|
[7] |
ZHANG S T, CHENG R, WANG J L, et al. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks[J]. Chemical Engineering Journal, 2019, 359: 354-362.
|
[8] |
余阳, 陈团伟, 甄文博, 等. UiO-66(Zr)对As3+的吸附性能及吸附动力学研究[J]. 食品与机械, 2016, 32(6): 61-67.
|
[9] |
杨清香, 任爽爽, 赵倩倩, 等. 磁性UiO-66复合材料的合成及其对水体中硝基酚有机分子的吸附性能[J]. 无机化学学报, 2017, 33(5): 843-852.
|
[10] |
GE L, WANG L, RUDOLPH V, et al. Hierarchically structured metal-organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture[J]. RSC Advances, 2013, 3(47): 25360-25366.
|
[11] |
PRASANTH K P, RALLAPALLI P, RAJ M C, et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7594-7601.
|
[12] |
ANBIA M, SHEYKHI S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1583-1586.
|
[13] |
ZHOU Y, ZHOU L, ZHANG X H, et al. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity[J]. Microporous and Mesoporous Materials, 2016, 225: 488-493.
|
[14] |
ZHAO Y X, SEREDYCH M, ZHONG Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4951-4959.
|
[15] |
ZHANG Z Z,WANG H, CHEN X Q, et al. Chromium-based metal-organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption[J]. Adsorption, 2015, 21(1/2): 77-86.
|
[16] |
ZHOU X, HUANG W Y, SHI J, et al. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone[J]. Journal of Materials Chemistry A, 2014, 2(13): 4722-4730.
|
[17] |
SUN X J, XIA Q B, ZHAO Z X, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239: 226-232.
|
[18] |
KUMAR R, JAYARAMULU K, MAJI T. K,et al. Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties[J]. Chemical Communications, 2013, 49(43): 4947-4949.
|
[19] |
CAO Y, ZHAO Y X, LV Z J, et al. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 102-107.
|
[20] |
ZHAO Q, YUAN W, LIANG J, et al. Synthesis and hydrogen storage studies of metal-organic framework UiO-66[J]. International Journal of Hydrogen Energy, 2013, 38(29): 13104-13109.
|
[21] |
韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4): 367-378.
|
[22] |
EBRAHIM A M, BANDOSZ T J. Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10565-10573.
|
[23] |
JAHAN M, BAO Q, YANG J X, et al. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire[J]. Journal of the American Chemical Society, 2010, 132(41): 14487-14495.
|
[24] |
ZHENG Y, CHE F C, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76.
|
[25] |
任天昊, 杨智临, 郭琳, 等. UiO-66对废水中二氯苯氧乙酸的吸附特性[J]. 环境科学, 2016, 37(6): 2202-2210.
|
[26] |
PAVAGADHI S, TANG A, SATHISHKUMAR M, et al. Removal of microcystin-LR and microcystin-RR by graphene oxide: Adsorption and kinetic experiments[J]. Water Research, 2013, 47: 4621-4629.
|
[27] |
SALEH T A, ALHOOSHANI K R, ABDELBASSIT M S A, et al. Evaluation of AC/ZnO composite for absorption of dichloromethane, trichloromethane and carbon tetrachloride: Kinetics and isotherms[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 159-169.
|
[28] |
ZHAO G X, LI J X, WANG X K. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets[J]. Chemical Engineering Journal, 2011, 173(1): 185-190.
|
[29] |
刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中Cr(Ⅵ)研究[J]. 环境科学, 2015, 36(2): 537-544.
|
[30] |
何春东, 朱雪强, 刘汉湖, 等. 活性氧化铝吸附水中四氯化碳的实验研究[J]. 环境科技, 2012, 25(4): 14-18.
|
[31] |
彭敏. 粉末活性炭吸附水中四氯化碳试验研究[J]. 供水技术, 2011, 5(2): 18-20.
|
[32] |
席宏波, 杨琦, 尚海涛, 等. 三氧化二铝超细粉末对水中三氯乙烯吸附特性研究[J]. 地球与环境, 2008, 36(3): 270-275.
|
[33] |
于谦, 杨春生, 丁成. 1,2二氯苯在3种基质中的吸附研究[J]. 环境工程学报, 2011, 5(7): 1675-1680.
|
[34] |
LI D, QIN L, WANG K, et al. Growth of zeolite crystals with graphene oxide nanosheets[J]. Chemical Communications, 2012, 48(16): 2249-2251.
|
[35] |
ZHANG X Y, GAN B, CREAMER A. E,et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338:102-123.
|