核桃壳生物炭小球对雌激素污染物的吸附机制

徐欢欢, 宋新山, 司志浩, 王宇晖. 核桃壳生物炭小球对雌激素污染物的吸附机制[J]. 环境工程学报, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
引用本文: 徐欢欢, 宋新山, 司志浩, 王宇晖. 核桃壳生物炭小球对雌激素污染物的吸附机制[J]. 环境工程学报, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
XU Huanhuan, SONG Xinshan, SI Zhihao, WANG Yuhui. Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
Citation: XU Huanhuan, SONG Xinshan, SI Zhihao, WANG Yuhui. Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179

核桃壳生物炭小球对雌激素污染物的吸附机制

  • 基金项目:

    中央高校基本科研业务费专项基金 18D111310中央高校基本科研业务费专项基金 (18D111310)

Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell

  • Fund Project:
  • 摘要: 为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400 ℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500 μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。
  • 加载中
  • [1] KABIR E R, RAHMAN M S, RAHMAN I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology & Pharmacology, 2015, 40(1): 241-258.
    [2] DAMSTRA T, BARLOW S, BERGMAN A, et al. Global assessment of the state of the science of endocrine disruptors[J]. Polui??o Ambiental, 2002, 35(4): 333-343.
    [3] DUONG C N, JINSUNG R, JAEWEON C, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries[J]. Chemosphere, 2010, 78(3): 286-293.
    [4] KHANAL S K, XIE B, THOMPSON M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems[J]. Environmental Science & Technology, 2007, 38(1): 6537-6546.
    [5] TIJANI J O, FATOBA O O, PETRIK L F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections[J]. Water, Air & Soil Pollution, 2013, 224(1170): 1-29.
    [6] BAKSHI S, HE Z L, HARRIS W G. Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils[J]. Journal of Environmental Quality, 2014, 43(6): 1894-1902.
    [7] SUN K, RO K, GUO M, et al. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars[J]. Bioresource Technology, 2011, 102(10): 5757-5763.
    [8] 王立果, 钟金魁, 赵保卫, 等. 水中镉和芘在核桃壳生物炭上的吸附行为及其交互作用[J]. 农业环境科学学报, 2017, 36(9): 1868-1876.
    [9] 刘巍, 胡中华, 刘亚菲, 等. 新型固定化生物小球的研制及其处理模拟苯胺废水的特性[J]. 环境科学学报, 2009, 29(6): 1195-1202.
    [10] 黄潇. 河口湿地高效降解菌生物炭球固定化技术及作用效果研究[D]. 青岛: 中国海洋大学, 2015.
    [11] 刘桂芳. 表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
    [12] YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.
    [13] 李沛辰, 毋伟, 张丰松, 等. 秸秆生物碳的结构特征及其对17β-雌二醇的吸附性能[J]. 环境科学研究, 2015, 28(8): 1260-1266.
    [14] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.
    [15] YANG H, XU R, XUE X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 2008, 152(2): 690-698.
    [16] 赵华轩, 郎印海. 磁性生物炭对水中CIP和OFL的吸附行为和机制[J]. 环境科学, 2018, 39(8): 3729-3735.
    [17] 王昌稳, 李军, 赵白航, 等. 颗粒活性炭吸附去除水中雌激素的试验研究[J]. 北京工业大学学报, 2014, 40(4): 607-612.
    [18] TAN C Y, LI M, LIN Y M, et al. Biosorption of basic orange from aqueous solution onto dried A. filiculoides biomass: Equilibrium, kinetic and FTIR studies[J]. Desalination, 2011, 266(1): 56-62.
    [19] BAUTISTA T I, FERRO G M A, RIVERA U J, et al. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry[J]. Environmental Science & Technology, 2005, 39(16): 6246-6250.
    [20] FU H, LI X, WANG J, et al. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling[J]. Journal of Environmental Sciences, 2017, 56(6): 145-152.
    [21] HUI D, LU J, LI G, et al. Adsorption of methylene blue on adsorbent materials produced from cotton stalk[J]. Chemical Engineering Journal, 2011, 172(1): 326-334.
    [22] 黄华, 王雅雄, 唐景春, 等. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 2014, 35(5): 1884-1890.
    [23] CHEN L, BAI B. Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15568-15577.
    [24] 张鹏, 武健羽, 李力, 等. 猪粪制备的生物炭对西维因的吸附与催化水解作用[J]. 农业环境科学学报, 2012, 31(2): 416-421.
    [25] 巫林, 刘颖, 李燕, 等. 蚯蚓粪便生物炭对水体中雌二醇的吸附[J]. 环境科学研究, 2016, 29(10): 1537-1545.
    [26] ZHANG P, SUN H, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245(3): 217-224.
    [27] VIJAYARAGHAVAN K, PALANIVELU K, VELAN M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles[J]. Bioresource Technology, 2006, 97(12): 1411-1419.
    [28] TURKMENLER H, OZACAR M, SENGIL I A. Biosorption of lead onto mimosa tannin resin: Quilibrium and kinetic studies[J]. International Journal of Environment & Pollution, 2008, 34(1): 57-70.
  • 加载中
计量
  • 文章访问数:  3626
  • HTML全文浏览数:  3432
  • PDF下载数:  228
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15
徐欢欢, 宋新山, 司志浩, 王宇晖. 核桃壳生物炭小球对雌激素污染物的吸附机制[J]. 环境工程学报, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
引用本文: 徐欢欢, 宋新山, 司志浩, 王宇晖. 核桃壳生物炭小球对雌激素污染物的吸附机制[J]. 环境工程学报, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
XU Huanhuan, SONG Xinshan, SI Zhihao, WANG Yuhui. Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179
Citation: XU Huanhuan, SONG Xinshan, SI Zhihao, WANG Yuhui. Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 835-842. doi: 10.12030/j.cjee.201809179

核桃壳生物炭小球对雌激素污染物的吸附机制

  • 1. 东华大学环境科学与工程学院,上海 201620
基金项目:

中央高校基本科研业务费专项基金 18D111310中央高校基本科研业务费专项基金 (18D111310)

摘要: 为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400 ℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500 μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回