施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理

薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
引用本文: 薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
XUE Xudong, WANG Yongping, ZHANG Sijing. Performance and mechanism of oxidative degradation of methyl orange in wastewater by Schwertmannite/H2O2 system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
Citation: XUE Xudong, WANG Yongping, ZHANG Sijing. Performance and mechanism of oxidative degradation of methyl orange in wastewater by Schwertmannite/H2O2 system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147

施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理

  • 基金项目:

    国家重点研发计划项目2016YFC04007011国家重点研发计划项目(2016YFC04007011)

Performance and mechanism of oxidative degradation of methyl orange in wastewater by Schwertmannite/H2O2 system

  • Fund Project:
  • 摘要: 为了考察施氏矿物/H2O2体系对废水中甲基橙的氧化降解性能,通过化学法合成施氏矿物,分析了溶液初始pH、施氏矿物和H2O2投加量、共存阴离子等因素对甲基橙降解的影响,并对降解机理进行了初步探讨。结果表明:当溶液初始pH为3.0~5.0、甲基橙浓度为10 mg·L-1、施氏矿物和H2O2投加量分别为1.0 g·L-1和800 mg·L-1时,经过12 h反应后,废水中甲基橙降解率可达97.0%;而当初始溶液pH=6.0时,甲基橙的降解被抑制,降解率仅为52.4%。无机阴离子对甲基橙降解率的影响微弱,在Cl-、NO3-、SO42-共存条件下,12 h反应后,甲基橙降解率仍可达90.0%以上。施氏矿物重复利用性能良好,在经6个反应周期后,甲基橙的降解率仍可达93.4%。施氏矿物/H2O2体系可有效拓宽传统Fenton反应的pH范围,该体系对甲基橙具有良好的降解性能,降解过程遵循羟基自由基机理。
  • 加载中
  • [1] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94.
    [2] GARRIDO E, THENG B, MORA M. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review[J]. Applied Clay Science, 2010, 47(3): 182-192.
    [3] LU M C, CHANG Y F, CHEN I M, et al.Effect of chloride ions on the oxidation of aniline by Fenton’s reagent[J]. Journal of Environmental Management, 2005, 75(2): 177-182.
    [4] HANNA K, KONG T, MEDJAHDI G. Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation[J]. Catalysis Communications, 2008, 9(5): 955-959.
    [5] MACARENA M, PATRICIA D, ZAHARA M, et al. Naturally-occurring iron minerals as inexpensive catalysts for CWPO[J]. Applied Catalysis B: Environmental, 2017, 203: 166-173.
    [6] NATIJA B, NIHAL O, SALAH A, et al. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis[J]. Environmental Chemistry Letters, 2017, 15(4): 689-693.
    [7] MEIJIDE J, RODRIHUEZ S, SANROMAN M A, et al. Comprehensive solution for acetamiprid degradation: Combined electro-Fenton and adsorption process[J]. Journal of Electroanalytical Chemistry, 2018, 808: 446-454.
    [8] BJGHAM J M, SCHWERTMANN U, CARLOSN L. A poorly crystallized oxyhydroxysulfate of formed by bacterial oxidation of Fe(Ⅱ) in acid mine waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2743-2758.
    [9] COLLINS R N, JONES A M, WAITE T D. Schwertmannite stability in acidified coastal environments[J]. Geochim Cosmochim Acta, 2010, 74(2): 482-496.
    [10] BIGHAM J, SCHWERTMANN U, TRAINA S, et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2111-2121.
    [11] 刘奋武, 卜玉山, 田国举, 等. 温度与pH对生物合成施氏矿物在酸性环境中溶解行为及对Cu2+吸附效果的影响[J]. 环境科学学报, 2013, 33(9): 2445-2451.
    [12] HAI R, ZAO J, SONH W, et al. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(Ⅴ)[J]. Chemosphere, 2018, 208: 294-302.
    [13] MIN G, SHENGJIE S, ZHIHE Z, et al. Adsorption of Cr(Ⅵ) and Cu(Ⅱ) by AlPO4 modified biosynthetic Schwertmannite[J]. Applied Surface Science, 2015, 356: 986-997.
    [14] REGENSPURG S, BRAND A, PEIFFER S. Formationan and stability of schwertmannite in acid mining lakes[J]. Geochimica et Cosmochimica Acta, 2004, 68: 1185-1197.
    [15] 于怀东, 方茹, 陈士明, 等. 锰离子参与的类Fenton反应的HPLC和ESR波谱研究[J]. 化学学报, 2005, 63(14): 1357-1360.
    [16] SWAMINATHAN K, SANDHYA S, SOPHIA A C, et al. Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system[J]. Chemosphere, 2003, 50(5): 619-625.
    [17] 高霞, 梁海燕, 张瑞芳, 等. 无机阴离子对Fenton试剂处理活性艳红K-2BP染料废水的影响[J]. 新乡医学院学报, 2011, 28(5):569-570.
    [18] SIEDLECKA E M, WIECKOWSKA A, STEPNOWSKI P. Influence of inorganic ions on MTBE degradation by Fenton’s reagent[J]. Journal of Hazardous Materials, 2007, 147(1/2): 497-502.
    [19] 戚静, 吴琼, 段洪涛, 等. 施氏矿物催化降解4-氯苯酚性能研究[J]. 天津理工大学学报, 2016, 32(5): 55-59.
  • 加载中
计量
  • 文章访问数:  4463
  • HTML全文浏览数:  4281
  • PDF下载数:  194
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15
薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
引用本文: 薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
XUE Xudong, WANG Yongping, ZHANG Sijing. Performance and mechanism of oxidative degradation of methyl orange in wastewater by Schwertmannite/H2O2 system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147
Citation: XUE Xudong, WANG Yongping, ZHANG Sijing. Performance and mechanism of oxidative degradation of methyl orange in wastewater by Schwertmannite/H2O2 system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 843-849. doi: 10.12030/j.cjee.201809147

施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理

  • 1. 陕西省环境科学研究院,西安 710061
  • 2. 西安建筑科技大学理学院,西安 710055
基金项目:

国家重点研发计划项目2016YFC04007011国家重点研发计划项目(2016YFC04007011)

摘要: 为了考察施氏矿物/H2O2体系对废水中甲基橙的氧化降解性能,通过化学法合成施氏矿物,分析了溶液初始pH、施氏矿物和H2O2投加量、共存阴离子等因素对甲基橙降解的影响,并对降解机理进行了初步探讨。结果表明:当溶液初始pH为3.0~5.0、甲基橙浓度为10 mg·L-1、施氏矿物和H2O2投加量分别为1.0 g·L-1和800 mg·L-1时,经过12 h反应后,废水中甲基橙降解率可达97.0%;而当初始溶液pH=6.0时,甲基橙的降解被抑制,降解率仅为52.4%。无机阴离子对甲基橙降解率的影响微弱,在Cl-、NO3-、SO42-共存条件下,12 h反应后,甲基橙降解率仍可达90.0%以上。施氏矿物重复利用性能良好,在经6个反应周期后,甲基橙的降解率仍可达93.4%。施氏矿物/H2O2体系可有效拓宽传统Fenton反应的pH范围,该体系对甲基橙具有良好的降解性能,降解过程遵循羟基自由基机理。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回