紫外波长对UV/Cl2高级氧化去除水中有机物的影响

喻杰, 叶志伟, 党文悦, 杨宏伟. 紫外波长对UV/Cl2高级氧化去除水中有机物的影响[J]. 环境工程学报, 2019, 13(3): 577-585. doi: 10.12030/j.cjee.201809143
引用本文: 喻杰, 叶志伟, 党文悦, 杨宏伟. 紫外波长对UV/Cl2高级氧化去除水中有机物的影响[J]. 环境工程学报, 2019, 13(3): 577-585. doi: 10.12030/j.cjee.201809143
YU Jie, YE Zhiwei, DANG Wenyue, YANG Hongwei. Effect of ultraviolet wavelength on organic matter removal from water by UV/Cl2 advanced oxidation[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 577-585. doi: 10.12030/j.cjee.201809143
Citation: YU Jie, YE Zhiwei, DANG Wenyue, YANG Hongwei. Effect of ultraviolet wavelength on organic matter removal from water by UV/Cl2 advanced oxidation[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 577-585. doi: 10.12030/j.cjee.201809143

紫外波长对UV/Cl2高级氧化去除水中有机物的影响

  • 基金项目:

Effect of ultraviolet wavelength on organic matter removal from water by UV/Cl2 advanced oxidation

  • Fund Project:
  • 摘要: 为明确紫外波长对UV/Cl2高级氧化体系的影响,使用中心波长分别为267、275和286 nm的发光二极管LED作为光源,探究Cl2光解动力学、UV/Cl2体系自由基生成、对模式化合物溶液以及天然水、再生水TOC的去除。结果表明:在中性或酸性体系中,267 nm最接近HClO最大吸收波长237 nm,吸光度和量子产率均较大,羟基自由基产生水平较高,有机物去除效果较好;在碱性体系中,286 nm最接近ClO-最大吸收波长292 nm,尽管量子产率较小,但吸光度很大,有机物去除效果较好;由于水杨酸在292 nm附近有较强的竞争吸收,使用UV286去除水杨酸效果被削弱。应用UV/Cl2技术选择波长时需要考虑吸光度、量子产率、竞争吸收等因素;对于弱碱性天然水或再生水,采用波长为292 nm的紫外光一般可获得较优处理效果。
  • 加载中
  • [1] JIN J, ELDIN M G, BOLTON J R. Assessment of the UV/Chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896.
    [2] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O?) in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(2): 513-886.
    [3] WANG D, BOLTON J R, HOLFMANN R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46(15): 4677-4686.
    [4] WANG D, BOLTON J R, ANDREWS S A, et al. UV/chlorine control of drinking water taste and odour at pilot and full-scale[J]. Chemosphere, 2015, 136: 239-244.
    [5] DENG L, HONG Z, ZHU F, et al. Formation and degradation of trichloronitromethane of combined UV/chlorine disinfection[J]. Journal of Southeast University, 2017, 47(5): 972-978.
    [6] ADIVARAHAN V, WU S, CHITNIS A, et al. AlGaN single-quantum-well light-emitting diodes with emission at 285 nm[J]. Applied Physics Letters, 2002, 81(19): 3666-3668.
    [7] ADIVARAHAN V, WU S, ZHANG J P, et al. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2004, 84(23): 4762-4764.
    [8] ADIVARAHAN V, SUN WH, CHITNIS A, et al. 250 nm AlGaN light-emitting diodes[J]. Applied Physics Letters, 2004, 85(12): 2175-2177.
    [9] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328.
    [10] VILHUNEN S, PUTON J, VIRKUTYTE J, et al. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2[J]. Environmental Technology, 2011, 32(8): 865-872.
    [11] VERMA S, NAKAMURA S, SILLANP?? M. Application of UV-C LED activated PMS for the degradation of anatoxin-a[J]. Chemical Engineering Journal, 2016, 284: 122-129.
    [12] WANG W, WU Q, LI Z, et al. Light-emitting diodes as an emerging UV source for UV/chlorine oxidation: Carbamazepine degradation and toxicity changes[J]. Chemical Engineering Journal, 2017, 310: 148-156.
    [13] WANG H, BAKHEET B, YUAN S, et al. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process[J]. Journal of Hazardous Materials, 2015, 294: 90-98.
    [14] BOLTON J R, STEFAN M I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions[J]. Research on Chemical Intermediates, 2002, 28(7/8/9): 857-870.
    [15] FENG Y, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (NOCI and OCI-) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2008, 6(3): 277-284.
    [16] PARRINO F, CAMERA-RODA G, LODDO V, et al. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formicacid as probe pollutant and bromide ion[J]. Water Research, 2014, 50(3): 189-199.
    [17] OU H, YE J, MS S, et al. Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength ultraviolet light-emitting diodes: Effectiveness, intermediates and antibacterial activity[J]. Chemical Engineering Journal, 2016, 289: 391-401.
    [18] HU R, ZHANG L, HU J. Study on the kinetics and transformation products of salicylic acid inwater via ozonation[J]. Chemosphere, 2016, 153: 394-404.
  • 加载中
计量
  • 文章访问数:  5059
  • HTML全文浏览数:  5003
  • PDF下载数:  205
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-03-14

紫外波长对UV/Cl2高级氧化去除水中有机物的影响

  • 1. 清华大学环境学院,北京 100084
  • 2. 北京林业大学环境科学与工程学院,北京 100083
基金项目:

摘要: 为明确紫外波长对UV/Cl2高级氧化体系的影响,使用中心波长分别为267、275和286 nm的发光二极管LED作为光源,探究Cl2光解动力学、UV/Cl2体系自由基生成、对模式化合物溶液以及天然水、再生水TOC的去除。结果表明:在中性或酸性体系中,267 nm最接近HClO最大吸收波长237 nm,吸光度和量子产率均较大,羟基自由基产生水平较高,有机物去除效果较好;在碱性体系中,286 nm最接近ClO-最大吸收波长292 nm,尽管量子产率较小,但吸光度很大,有机物去除效果较好;由于水杨酸在292 nm附近有较强的竞争吸收,使用UV286去除水杨酸效果被削弱。应用UV/Cl2技术选择波长时需要考虑吸光度、量子产率、竞争吸收等因素;对于弱碱性天然水或再生水,采用波长为292 nm的紫外光一般可获得较优处理效果。

English Abstract

参考文献 (18)

目录

/

返回文章
返回