预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水

周师帅, 顾平, 刘阳, 何利斌, 张光辉, 董丽华, 袁艳林. 预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水[J]. 环境工程学报, 2019, 13(3): 586-593. doi: 10.12030/j.cjee.201809058
引用本文: 周师帅, 顾平, 刘阳, 何利斌, 张光辉, 董丽华, 袁艳林. 预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水[J]. 环境工程学报, 2019, 13(3): 586-593. doi: 10.12030/j.cjee.201809058
ZHOU Shishuai, GU Ping, LIU Yang, HE Libin, ZHANG Guanghui, DONG Lihua, YUAN Yanlin. Iodide removal from the simulated radioactive wastewater by predeoxygenation-precipitation-column membrane separation combined process[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 586-593. doi: 10.12030/j.cjee.201809058
Citation: ZHOU Shishuai, GU Ping, LIU Yang, HE Libin, ZHANG Guanghui, DONG Lihua, YUAN Yanlin. Iodide removal from the simulated radioactive wastewater by predeoxygenation-precipitation-column membrane separation combined process[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 586-593. doi: 10.12030/j.cjee.201809058

预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水

  • 基金项目:

    国家水体污染控制与治理科技重大专项2015ZX07406006国家水体污染控制与治理科技重大专项(2015ZX07406006)

Iodide removal from the simulated radioactive wastewater by predeoxygenation-precipitation-column membrane separation combined process

  • Fund Project:
  • 摘要: 为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na2SO3作除氧剂、Cu2+作催化剂对原水进行预除氧,投加量分别为150 mg·L-1和1 mg·L-1;沉淀剂CuCl投加量为100 mg·L-1。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。
  • 加载中
  • [1] GARLAND J A, WAKEFORD R. Atmospheric emissions from the Windscale accident of October 1957[J]. Atmospheric Environment, 2007, 41(18): 3904-3920.
    [2] HOU X L, POVINEC P P, ZHANG L Y, et al. Iodine-129 in seawater offshore Fukushima: Distribution, inorganic speciation, sources, and budget[J]. Environmental Science & Technology, 2013, 47(7): 3091-3098.
    [3] 王川, 孔衍, 王月兴. 核事故医学应急碘预防措施分析[J]. 上海医学, 2012, 35(7): 639-642.
    [4] 史建君. 放射性核素对生态环境的影响[J]. 核农学报, 2011, 25(2): 397-403.
    [5] RON E, LUBIN J H, SHORE R E, et al. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies[J]. Radiation Research, 1995, 141(3): 259-277.
    [6] 朱昌寿. 放射性碘的危害评价[J]. 国外医学·放射医学核医学分册, 1995, 19(4): 172-176.
    [7] 侯立安. 核沾染水处理技术及饮用水安全保障[J]. 给水排水, 2011, 37(11): 1-3.
    [8] CHINO M, NAKAYAMA H, NAGAI H, et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere[J]. Journal of Nuclear Science and Technology, 2011, 48(7): 1129-1134.
    [9] KAWAMURA H, KOBAYASHI T, FURUNO A, et al. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster[J]. Journal of Nuclear Science and Technology, 2011, 48(11): 1349-1356.
    [10] 贾麟, 刘阳, 张光辉, 等. 去除水体中放射性碘核素的研究进展[J]. 工业水处理, 2015, 35(7): 10-13.
    [11] ZHANG X Y, GU P, LI X Y, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139.
    [12] LI C M, WEI Y Z, WANG X P, et al. Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 193-200.
    [13] CHEN J Y, GAO Q H, ZHANG X M, et al. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J]. Science of the Total Environment, 2019, 646: 634-644.
    [14] RANA D, MATSUURA T, KASSIM M A, et al. Radioactive decontamination of water by membrane processes: A review[J]. Desalination, 2013, 321(15): 77-92.
    [15] LEE S, KIM Y, PARK J, et al. Treatment of medical radioactive liquid waste using forward osmosis (FO) membrane process[J]. Journal of Membrane Science, 2018, 556: 238-247.
    [16] LIU Y, GU P, JIA L, et al. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions[J]. Journal of Hazardous Materials, 2015, 302: 82-89.
    [17] 杨云, 顾平, 刘阳, 等. 沉淀-微滤组合工艺处理模拟含碘放射性废水[J]. 化工学报, 2017, 68(3): 1211-1217.
    [18] SATO I, KUDO H, TSUDA S. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water[J]. Journal of Toxicological Sciences, 2011, 36(6): 829-834.
    [19] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法: GB/T 5750-2006[S]. 北京: 中国标准出版社, 2006.
    [20] LUO X, ZHANG G H, WANG X, et al. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(2): 931-939.
    [21] JHAVERI A S, SHARMA M M. Kinetics of absorption of oxygen in aqueous solutions of cuprous chloride[J]. Chemical Engineering Science, 1967, 22(1): 1-6.
    [22] 范崇正, 王昌燧, 赵化章, 等. 氯化亚铜氧化反应的化学动力学初探[J]. 物理化学学报, 1992, 8(5): 685-689.
    [23] BEVERSKOG B, PUIGDOMENECH I. Revised pourbaix diagrams for copper at 25 to 300 ℃[J]. Journal of the Electrochemical Society, 1997, 144(10): 3476-3483.
    [24] 邵忠宝, 赵敬棋. 催化Na2SO3除氧的研究[J]. 腐蚀科学与防护技术, 2002, 14(1): 49-51.
    [25] 吴玉胜, 于海燕, 杨毅宏, 等. 添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J]. 化工学报, 2005, 56(12): 2434-2439.
    [26] 夏清, 陈常贵. 化工原理: 下册[M]. 天津: 天津大学出版社, 2005.
  • 加载中
计量
  • 文章访问数:  2941
  • HTML全文浏览数:  2904
  • PDF下载数:  139
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-03-14

预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水

  • 1. 天津大学环境科学与工程学院,天津 300350
基金项目:

国家水体污染控制与治理科技重大专项2015ZX07406006国家水体污染控制与治理科技重大专项(2015ZX07406006)

摘要: 为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na2SO3作除氧剂、Cu2+作催化剂对原水进行预除氧,投加量分别为150 mg·L-1和1 mg·L-1;沉淀剂CuCl投加量为100 mg·L-1。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。

English Abstract

参考文献 (26)

目录

/

返回文章
返回