[1] |
GARLAND J A, WAKEFORD R. Atmospheric emissions from the Windscale accident of October 1957[J]. Atmospheric Environment, 2007, 41(18): 3904-3920.
|
[2] |
HOU X L, POVINEC P P, ZHANG L Y, et al. Iodine-129 in seawater offshore Fukushima: Distribution, inorganic speciation, sources, and budget[J]. Environmental Science & Technology, 2013, 47(7): 3091-3098.
|
[3] |
王川, 孔衍, 王月兴. 核事故医学应急碘预防措施分析[J]. 上海医学, 2012, 35(7): 639-642.
|
[4] |
史建君. 放射性核素对生态环境的影响[J]. 核农学报, 2011, 25(2): 397-403.
|
[5] |
RON E, LUBIN J H, SHORE R E, et al. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies[J]. Radiation Research, 1995, 141(3): 259-277.
|
[6] |
朱昌寿. 放射性碘的危害评价[J]. 国外医学·放射医学核医学分册, 1995, 19(4): 172-176.
|
[7] |
侯立安. 核沾染水处理技术及饮用水安全保障[J]. 给水排水, 2011, 37(11): 1-3.
|
[8] |
CHINO M, NAKAYAMA H, NAGAI H, et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere[J]. Journal of Nuclear Science and Technology, 2011, 48(7): 1129-1134.
|
[9] |
KAWAMURA H, KOBAYASHI T, FURUNO A, et al. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster[J]. Journal of Nuclear Science and Technology, 2011, 48(11): 1349-1356.
|
[10] |
贾麟, 刘阳, 张光辉, 等. 去除水体中放射性碘核素的研究进展[J]. 工业水处理, 2015, 35(7): 10-13.
|
[11] |
ZHANG X Y, GU P, LI X Y, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139.
|
[12] |
LI C M, WEI Y Z, WANG X P, et al. Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 193-200.
|
[13] |
CHEN J Y, GAO Q H, ZHANG X M, et al. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J]. Science of the Total Environment, 2019, 646: 634-644.
|
[14] |
RANA D, MATSUURA T, KASSIM M A, et al. Radioactive decontamination of water by membrane processes: A review[J]. Desalination, 2013, 321(15): 77-92.
|
[15] |
LEE S, KIM Y, PARK J, et al. Treatment of medical radioactive liquid waste using forward osmosis (FO) membrane process[J]. Journal of Membrane Science, 2018, 556: 238-247.
|
[16] |
LIU Y, GU P, JIA L, et al. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions[J]. Journal of Hazardous Materials, 2015, 302: 82-89.
|
[17] |
杨云, 顾平, 刘阳, 等. 沉淀-微滤组合工艺处理模拟含碘放射性废水[J]. 化工学报, 2017, 68(3): 1211-1217.
|
[18] |
SATO I, KUDO H, TSUDA S. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water[J]. Journal of Toxicological Sciences, 2011, 36(6): 829-834.
|
[19] |
中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法: GB/T 5750-2006[S]. 北京: 中国标准出版社, 2006.
|
[20] |
LUO X, ZHANG G H, WANG X, et al. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(2): 931-939.
|
[21] |
JHAVERI A S, SHARMA M M. Kinetics of absorption of oxygen in aqueous solutions of cuprous chloride[J]. Chemical Engineering Science, 1967, 22(1): 1-6.
|
[22] |
范崇正, 王昌燧, 赵化章, 等. 氯化亚铜氧化反应的化学动力学初探[J]. 物理化学学报, 1992, 8(5): 685-689.
|
[23] |
BEVERSKOG B, PUIGDOMENECH I. Revised pourbaix diagrams for copper at 25 to 300 ℃[J]. Journal of the Electrochemical Society, 1997, 144(10): 3476-3483.
|
[24] |
邵忠宝, 赵敬棋. 催化Na2SO3除氧的研究[J]. 腐蚀科学与防护技术, 2002, 14(1): 49-51.
|
[25] |
吴玉胜, 于海燕, 杨毅宏, 等. 添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J]. 化工学报, 2005, 56(12): 2434-2439.
|
[26] |
夏清, 陈常贵. 化工原理: 下册[M]. 天津: 天津大学出版社, 2005.
|