虾壳粉对水溶液中阴、阳离子型染料的吸附

吴琦, 戴凌青, 杨文叶, 葛柳钦, 夏枚生. 虾壳粉对水溶液中阴、阳离子型染料的吸附[J]. 环境工程学报, 2019, 13(3): 594-606. doi: 10.12030/j.cjee.201809141
引用本文: 吴琦, 戴凌青, 杨文叶, 葛柳钦, 夏枚生. 虾壳粉对水溶液中阴、阳离子型染料的吸附[J]. 环境工程学报, 2019, 13(3): 594-606. doi: 10.12030/j.cjee.201809141
WU Qi, DAI Lingqing, YANG Wenye, GE Liuqin, XIA Meisheng. Adsorption of cationic and anionic dyes from aqueous solutions by shrimp shell powder[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 594-606. doi: 10.12030/j.cjee.201809141
Citation: WU Qi, DAI Lingqing, YANG Wenye, GE Liuqin, XIA Meisheng. Adsorption of cationic and anionic dyes from aqueous solutions by shrimp shell powder[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 594-606. doi: 10.12030/j.cjee.201809141

虾壳粉对水溶液中阴、阳离子型染料的吸附

  • 基金项目:

Adsorption of cationic and anionic dyes from aqueous solutions by shrimp shell powder

  • Fund Project:
  • 摘要: 采用废弃虾壳制备吸附剂处理含刚果红或亚甲基蓝的溶液。考察了温度、吸附时间、初始浓度、吸附剂投加量和初始溶液pH对吸附效果的影响并构建了去除率预测模型,并对吸附等温线、吸附动力学和吸附热力学进行系统研究。结果表明:虾壳粉对刚果红和亚甲基蓝的吸附分别在24 h和4 h时达到平衡,平衡吸附量随吸附时间、初始浓度及吸附剂投加量的增加而增大;刚果红平衡吸附量随pH升高而增大,亚甲基蓝平衡吸附量几乎不随pH变化。在15 ℃下,吸附剂投加量为1 g·L-1,刚果红吸附的最优条件为接触时间24 h、pH=4,在该条件下,虾壳粉对刚果红的饱和吸附量为276.64 mg·g-1;亚甲基蓝吸附的最优条件为接触时间4 h、pH=12,在该条件下,虾壳粉对刚果红的饱和吸附量为1.44 mg·g-1;虾壳粉对2种染料的吸附过程以物理吸附为主,符合准二级动力学方程。虾壳粉对阴离子型染料的吸附效果较优,对阳离子型染料有一定吸附性能,是一种经济高效的染料废水吸附材料。
  • 加载中
  • [1] 林俊雄, 詹树林, 方明晖, 等. 三种吸附剂的改性与染料吸附特性比较研究[J]. 浙江大学学报(工学版), 2006, 40(12): 2031-2036.
    [2] 刘宝河, 孟冠华, 陶冬民, 等. 污泥吸附剂对3种染料吸附动力学的研究[J]. 环境工程学报, 2011, 5(1): 95-99.
    [3] 徐颖, 叶志隆, 叶欣, 等. 给水污泥对水中磷的吸附性能[J]. 环境工程学报, 2018, 12(3): 712-719.
    [4] 高国龙, 李登新, 孙利娜. 废布料活性炭吸附典型染料动力学研究[J]. 环境工程学报, 2011, 5(6): 1405-1408.
    [5] WANG S, BOYJOO Y, CHOUEIB A, et al. Removal of dyes from aqueous solution using fly ash and red mud[J]. Water Research, 2005, 39(1): 129-138.
    [6] BATZIAS F A, SIDIRAS D K. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems[J]. Journal of Hazardous Materials, 2004, 114(1/2/3): 167-174.
    [7] 王丰喜, 倪佩军, 刘张敏, 等. 硅质壳及硅藻土对亚甲基蓝吸附性能比较[J]. 环境工程学报, 2016, 10(4): 1693-1698.
    [8] AN H K, PARK B Y, KIM D S. Crab shell for the removal of heavy metals from aqueous solution[J]. Water Research, 2001, 35(15): 3551-3556.
    [9] VIJAYARAGHAVAN K, WINNIE H Y N, BALASUBRAMANIAN R. Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions[J]. Desalination, 2011, 266(1): 195-200.
    [10] 魏燕芳, 邹哲凯. 废弃雪虾壳对染料的吸附行为[J]. 华侨大学学报(自然科学版), 2013, 34(5): 547-551.
    [11] GREGORIO C. Non-conventional low-cost adsorbents for dye removal: A review[J]. Bioresource Technology, 2006, 97(9): 1061-1085.
    [12] WU F C, TSENG R L, JUANG R S. Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes[J]. Journal of Hazardous Materials, 2000, 73(1): 63-75.
    [13] KOUSHA M, TAVAKOLI S, DANESHVAR E, et al. Central composite design optimization of acid blue 25 dye biosorption using shrimp shell biomass[J]. Journal of Molecular Liquids, 2015, 207: 266-273.
    [14] DAI L, YAO Z, YANG W, et al. Crab shell: A potential high-efficiency and low-cost adsorbent for dye wastewater[J]. Fresenius Environmental Bulletin, 2017, 26(8): 4991-4998.
    [15] DOTTO G L, SANTOS J M, RODRIGUES I L, et al. Adsorption of methylene blue by ultrasonic surface modified chitin[J]. Journal of Colloid & Interface Science, 2015, 446(1): 133-140.
    [16] DOLTABADI M, ALIDADI H, DAVOUDI M. Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust‐based adsorbent[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1078-1090.
    [17] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
    [18] FREUNDLICH H. Ueber die adsorption in loesungen[J]. Zeitschrisft fur Physikalische Chemie, 1907, 57: 385-470.
    [19] REDLICH O, PETERSON D L. A useful adsorption isotherm[J]. Journal of Physical Chemistry, 1959, 63(6): 1024.
    [20] TOTH J. State equations of the solid gas interface layer[J]. Acta Chemica Academiae Hungaricae, 1971, 69: 311-317.
    [21] LAGERGREN S. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24(4): 1-39.
    [22] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
    [23] WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Asce Sanitary Engineering Division Journal, 1963, 89(1): 1-2.
    [24] 张跃冬. 半纤维素原料的预处理及酶解制备低聚木糖的研究[D]. 北京: 中国科学院大学, 2015.
    [25] 李婷. 配煤法制备柱状净水活性炭的研究[D]. 徐州: 中国矿业大学, 2015.
    [26] 姜鲁华, 杜芳林, 张瑞社, 等. 纳米碳酸钙制备过程中添加剂对产物的影响[J]. 青岛科技大学学报(自然科学版), 2002, 23(4): 17-19.
    [27] 蒋挺大. 甲壳素[M]. 北京: 化学工业出版社, 2003.
    [28] WANYONYI W C, ONYARI J M, SHIUNDU P M. Adsorption of congo red dye from aqueous solutions using roots of eichhornia crassipes: Kinetic and equilibrium studies[J]. Energy Procedia, 2014, 50: 862-869.
    [29] BEGUM H A, MONDAL A K, MUSLIM T. Adsorptiveremoval of reactive black 5 from aqueous solution using chitin prepared from shrimp shells[J]. Bangladesh Pharmaceutical Journal, 2012, 15(2): 145-152.
    [30] GUIBAL E, MILOT C, ROUSSY J. Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan[J]. Separation Science & Technolog, 2007, 35(7): 1021-1038.
    [31] PRINCE J I C, SIVAKUMAR A, KAMIL M. Crab shell-treated custard apple shell for the removal of lead (II) and cadmium (II) from paint industry effluent: Kinetic. thermodynamics and equilibrium studies[J]. Research on Chemical Intermediates, 2015, 41(2): 609-622.
    [32] ZUNIGA-ZAMORA A, GARCIAMENCA J, CERVANTESGONZALEZ E. Removal of congo red from the aqueous phase by chitin and chitosan from waste shrimp[J]. Desalination & Water Treatment, 2015, 57(31): 1-12.
    [33] LIU M, XU J, CHENG B, et al. Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet-graphene oxide composites[J]. Applied Surface Science, 2015, 332: 121-129.
    [34] RAVAL N P, SHAH P U, LADHA D G, et al. Comparative study of chitin and chitosan beads for the adsorption of hazardous anionic azo dye congo red from wastewater[J]. Desalination & Water Treatment, 2015, 57(20): 9247-9262.
    [35] FOROUGHI-DAHR M, ABOLGHASEMI H, ESMAIELI M, et al. Experimental study on the adsorptive behavior of congo red in cationic surfactant-modified tea waste[J]. Process Safety & Environmental Protection, 2015, 95: 226-236.
    [36] CHATTERJEE S, CHATTERJEE S, CHATTERJEE B P, et al. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2007, 299(1/2/3): 146-152.
    [37] NAMASIVAYAM C, MUNIASAMY N, GAYATRI K, et al. Removal of dyes from aqueous solutions by cellulosic waste orange peel[J]. Bioresource Technology, 1996, 57(1): 37-43.
    [38] VIMONSES V, LEI S M, BO J, et al. Adsorption of congo red by three Australian kaolins[J]. Applied Clay Science, 2009, 43(3): 465-472.
    [39] 王赛花, 牛红云, 蔡亚岐. 新型石墨烯磁性复合材料的制备及其对水中亚甲基蓝的吸附去除[J]. 分析测试学报, 2015, 34(2): 127-133.
    [40] DOTTO G L, SANTOS J M N, RODRIGUES I L, et al. Adsorption of methylene blue by ultrasonic surface modified chitin[J]. Journal of Colloid & Interface Science, 2015, 446: 133-140.
    [41] GHOSH D, BHATTACHARYYA K G. Adsorption of methylene blue on kaolinite[J]. Applied Clay Science, 2002, 20(6): 295-300.
    [42] RAO V V B, RAO S R M. Adsorption studies on treatment of textile dyeing industrial effluent by flyash[J]. Chemical Engineering Journal, 2006, 116(1): 77-84.
    [43] SUN S, WANG A. Adsorption kinetics of Cu(II) ions using N, O-carboxymethyl-chitosan[J]. Journal of Hazardous Materials, 2006, 131(1): 103-111.
    [44] PEREZ-MARIN A B, ZAPATA V M, ORTUNO J F, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste[J]. Journal of Hazardous Materials, 2007, 139(1): 122-131.
  • 加载中
计量
  • 文章访问数:  4501
  • HTML全文浏览数:  4442
  • PDF下载数:  238
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-03-14

虾壳粉对水溶液中阴、阳离子型染料的吸附

  • 1. 浙江大学海洋学院,舟山 316021
基金项目:

摘要: 采用废弃虾壳制备吸附剂处理含刚果红或亚甲基蓝的溶液。考察了温度、吸附时间、初始浓度、吸附剂投加量和初始溶液pH对吸附效果的影响并构建了去除率预测模型,并对吸附等温线、吸附动力学和吸附热力学进行系统研究。结果表明:虾壳粉对刚果红和亚甲基蓝的吸附分别在24 h和4 h时达到平衡,平衡吸附量随吸附时间、初始浓度及吸附剂投加量的增加而增大;刚果红平衡吸附量随pH升高而增大,亚甲基蓝平衡吸附量几乎不随pH变化。在15 ℃下,吸附剂投加量为1 g·L-1,刚果红吸附的最优条件为接触时间24 h、pH=4,在该条件下,虾壳粉对刚果红的饱和吸附量为276.64 mg·g-1;亚甲基蓝吸附的最优条件为接触时间4 h、pH=12,在该条件下,虾壳粉对刚果红的饱和吸附量为1.44 mg·g-1;虾壳粉对2种染料的吸附过程以物理吸附为主,符合准二级动力学方程。虾壳粉对阴离子型染料的吸附效果较优,对阳离子型染料有一定吸附性能,是一种经济高效的染料废水吸附材料。

English Abstract

参考文献 (44)

目录

/

返回文章
返回