基于树脂处理和电解联用的卤代消毒副产物控制

尹彤, 吴赟, 施鹏, 李爱民, 周庆, 双陈冬, 潘旸. 基于树脂处理和电解联用的卤代消毒副产物控制[J]. 环境工程学报, 2019, 13(2): 272-281. doi: 10.12030/j.cjee.201808007
引用本文: 尹彤, 吴赟, 施鹏, 李爱民, 周庆, 双陈冬, 潘旸. 基于树脂处理和电解联用的卤代消毒副产物控制[J]. 环境工程学报, 2019, 13(2): 272-281. doi: 10.12030/j.cjee.201808007
YIN Tong, WU Yun, SHI Peng, LI Aimin, ZHOU Qing, SHUANG Chendong, PAN Yang. Control of halogenated disinfection byproducts with a resin adsorption-electrolyzation method[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 272-281. doi: 10.12030/j.cjee.201808007
Citation: YIN Tong, WU Yun, SHI Peng, LI Aimin, ZHOU Qing, SHUANG Chendong, PAN Yang. Control of halogenated disinfection byproducts with a resin adsorption-electrolyzation method[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 272-281. doi: 10.12030/j.cjee.201808007

基于树脂处理和电解联用的卤代消毒副产物控制

  • 基金项目:

    国家自然科学基金资助项目51778280,51608253,51438008

    江苏省优秀青年基金资助项目BK20180058

    中央高校基本科研业务费专项资金14380079

    江苏省青年基金资助项目BK20160656国家自然科学基金资助项目(51778280,51608253,51438008)

    江苏省优秀青年基金资助项目(BK20180058)

    中央高校基本科研业务费专项资金(14380079)

    江苏省青年基金资助项目(BK20160656)

Control of halogenated disinfection byproducts with a resin adsorption-electrolyzation method

  • Fund Project:
  • 摘要: 天然有机物(NOM)和溴离子是卤代消毒副产物的前体物,氯型阴离子交换树脂可以有效去除这2种前体物,同时交换出氯离子。交换出的氯离子与水源水中天然存在的氯离子通过电解可以产生自由氯用于消毒。将氯型阴离子 交换树脂处理与电解联用,通过建立和优化树脂处理与电解消毒方法,实现饮用水中卤代消毒副产物的控制。结果表明:树脂依次经过碱/酸洗、甲醇抽提和5次去离子水清洗后,可以有效减少树脂溶出,并降低氯离子和甲醇的影响;在2 L的模拟水源水样中加入20 mL树脂反应1 h后,可以去除93.7%的NOM和91.2%的溴离子;由树脂交换至水样中的氯离子通过电解氧化,可以在3 min内产生5 mg·L-1的氯。与单独的氯消毒相比,新方法可以削减86.4%的总有机卤 素(TOX)。
  • 加载中
  • [1] RICHARDSON S D, POSTIGO C. Drinking water disinfection by-products[M]//BARCELó D. Emerging Organic Contaminants and Human Health. Springer Berlin Heidelberg, 2011: 93-137.
    [2] ROOK J J. Formation of haloforms during chlorination of natural water[J]. Water Treatment & Examination, 1974, 23(2): 234-243.
    [3] RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2018, 90(1): 398-428.
    [4] WHO. Guidelines for Drinking-Water Quality[S]. World Health Organization, 2011.
    [5] EPA. National primary drinking water regulations: Stage 2 disinfectants and disinfection byproducts rule: Final rule[S]. Federal Register, 2006.
    [6] EU. Council directive 98/83/EC on the quality of water intended for human consumption[S]. Adopted by the Council, 1998.
    [7] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006.
    [8] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection byproducts in drinking water: A review and roadmap for research[J]. Mutation Reseaerch, Reviews in Mutation Research, 2007, 636(1/2/3): 178-242.
    [9] MORRIS R D, AUDET A M, ANGELILLO I F, et al. Chlorination, chlorination by-products and cancer: A meta-analysis[J]. American Journal of Public Health, 1992, 82(7): 955-963.
    [10] BULL R J, BIRNBAUM L S, CANTOR K P, et al. Water chlorination: Essential process or cancer hazard[J]. Fundamental & Applied Toxicology, 1995, 28(2): 155-166.
    [11] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1): 119-131.
    [12] HSU S, SINGER P. Removal of bromide and natural organic matter by anion exchange[J]. Water Research, 2010, 44(7): 2133-2140.
    [13] BOLTO B, DIXON D, ELDRIDGE R. Ion exchange for the removal of natural organic matter[J]. Reactive & Functional Polymers, 2004, 60(SI): 171-182.
    [14] ROKICKI C, BOYER T. Bicarbonate-form anion exchange: Affinity, regeneration, and stoichiometry[J]. Water Research, 2011, 45(3): 1329-1337.
    [15] WANG J, LI H, LI A, et al. Dissolved organic matter removal by magnetic anion exchange resin and released ion elimination by electrolysis[J]. Chemical Engineering Journal, 2014, 253: 237-242.
    [16] GHASEMIAN S, ASADISHAD B, OMANOVIC S, et al. Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes[J]. Water Research, 2017, 126: 299-307.
    [17] FENG C, SUZUKI K, ZHAO S, et al. Water disinfection by electrochemical treatment[J]. Bioresource Technology, 2004, 94(1): 21-25.
    [18] RICE E W, BAIRD R B, EATON A D, et al. Standard Methods for the Examination of Water and Wastewater[M]. 22nd ed. Washington, DC: American Public Health Association, 2012.
    [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [20] GREENWOOD N N, EARNSHAW A. Chemistry of the Elements[M]. Oxford: Butterworth-Heinemann, 1998: 310.
    [21] 龚云峰, 吴春华, 丁桓如. 苯乙烯系离子交换树脂溶出物测定研究[J]. 水处理技术, 2006, 32(6): 27-30.
    [22] 蒋淡宁. 磁性树脂在饮用水源水处理中的应用研究[D]. 南京: 南京大学, 2011.
    [23] EU.EC regulation No. 1935/2004, resolution AP(2004)3: On ion exchange and adsorbant resins used in the processing of foodstuff [S]. European Commission Public Health Committee, 2004.
    [24] BOYER T H, SINGER P C. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors[J]. Water Research, 2005, 39(7): 1265-1276.
    [25] SHUANG C, PAN F, ZHOU Q, et al. Magnetic polyacrylic anion exchange resin: Preparation, characterization and adsorption behavior of humic acid[J]. Industrial & Engineering Chemistry Research, 2012, 51(11): 4380-4387.
    [26] SHARP E L, JARVIS P, PARSONS S A, et al. Impact of fractional character on the coagulation of NOM[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2006, 286(1): 104-111.
    [27] BOYER T H, SINGER P C, AIKEN G R. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties[J]. Environmental Science & Technology, 2008, 42(19): 7431-7437.
    [28] SINGER P C, BILYK K. Enhanced coagulation using a magnetic ion exchange resin[J]. Water Research, 2002, 36(16): 4009-4022.
    [29] JOHNSON C J, SINGER P C. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment[J]. Water Research, 2004, 38(17): 3738-3750.
    [30] 林英姿, 姜明基, 吴超, 等. 饮用水中消毒副产物前体物的控制技术研究现状[J]. 中国资源综合利用, 2011, 29(10):28-30.
  • 加载中
计量
  • 文章访问数:  4760
  • HTML全文浏览数:  4642
  • PDF下载数:  204
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

基于树脂处理和电解联用的卤代消毒副产物控制

  • 1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京 210023
基金项目:

国家自然科学基金资助项目51778280,51608253,51438008

江苏省优秀青年基金资助项目BK20180058

中央高校基本科研业务费专项资金14380079

江苏省青年基金资助项目BK20160656国家自然科学基金资助项目(51778280,51608253,51438008)

江苏省优秀青年基金资助项目(BK20180058)

中央高校基本科研业务费专项资金(14380079)

江苏省青年基金资助项目(BK20160656)

摘要: 天然有机物(NOM)和溴离子是卤代消毒副产物的前体物,氯型阴离子交换树脂可以有效去除这2种前体物,同时交换出氯离子。交换出的氯离子与水源水中天然存在的氯离子通过电解可以产生自由氯用于消毒。将氯型阴离子 交换树脂处理与电解联用,通过建立和优化树脂处理与电解消毒方法,实现饮用水中卤代消毒副产物的控制。结果表明:树脂依次经过碱/酸洗、甲醇抽提和5次去离子水清洗后,可以有效减少树脂溶出,并降低氯离子和甲醇的影响;在2 L的模拟水源水样中加入20 mL树脂反应1 h后,可以去除93.7%的NOM和91.2%的溴离子;由树脂交换至水样中的氯离子通过电解氧化,可以在3 min内产生5 mg·L-1的氯。与单独的氯消毒相比,新方法可以削减86.4%的总有机卤 素(TOX)。

English Abstract

参考文献 (30)

目录

/

返回文章
返回